Reasoning Under Uncertainty: Variable Elimination

CPSC 322 - Uncertainty 6

Textbook §6.4

Belief Network Inference

Lecture Overview

- Recap

Example: Fire Diagnosis

The fire diagnosis belief network:

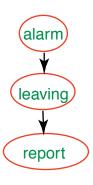
Belief Network Inference

Lecture Overview

- Observing Variables

 alarm and report are independent:

Chain

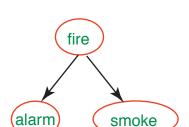


• alarm and report are independent: false.

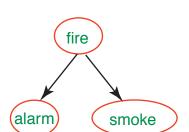
- *alarm* and *report* are independent: false.
- alarm and report are independent given leaving:

Chain

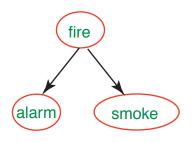
- *alarm* and *report* are independent: false.
- alarm and report are independent given leaving: true.
- Intuitively, the only way that the alarm affects report is by affecting leaving.



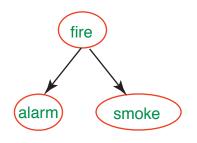
• alarm and smoke are independent:



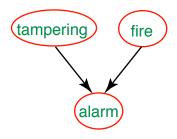
• alarm and smoke are independent: false.



- alarm and smoke are independent: false.
- alarm and smoke are independent given fire:

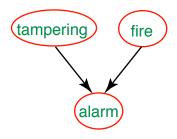


- alarm and smoke are independent: false.
- alarm and smoke are independent given fire: true.
- Intuitively, fire can $explain \ alarm \ and$ smoke; learning one can affect the other by changing your belief in fire.



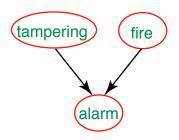
• tampering and fire are independent:

Common descendants



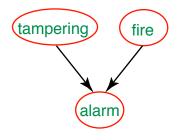
• tampering and fire are independent: true.

Common descendants



- tampering and fire are independent: true.
- tampering and fire are independent given alarm:

Common descendants



- tampering and fire are independent: true.
- tampering and fire are independent given alarm: false.
- Intuitively, tampering can explain away fire

Belief Network Inference

Lecture Overview

- Belief Network Inference

- Our goal: compute probabilities of variables in a belief network
- Two cases:
 - the unconditional (prior) distribution over one or more variables
 - ② the posterior distribution over one or more variables, conditioned on one or more observed variables

Recap

• If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_i = v_i$:

$$\begin{split} &P(Z|Y_1 = v_1, \dots, Y_j = v_j) \\ &= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{P(Y_1 = v_1, \dots, Y_j = v_j)} \\ &= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{\sum_{Z} P(Z, Y_1 = v_1, \dots, Y_j = v_j).} \end{split}$$

 So the computation reduces to the probability of $P(Z, Y_1 = v_1, \dots, Y_i = v_i).$

- Our goal: compute probabilities of variables in a belief network
- Two cases:
 - the unconditional (prior) distribution over one or more variables
 - 2 the posterior distribution over one or more variables. conditioned on one or more observed variables
- To address both cases, we only need a computational solution to case 1
- Our method: exploiting the structure of the network to efficiently eliminate (sum out) the non-observed, non-query variables one at a time.

Lecture Overview

Recap

- **Factors**

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
 - e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$
 - e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor $f(X_1, X_2)$
 - e.g., $P(X_1, X_3 = v_3 | X_2)$ is a factor $f(X_1, X_2)$

Manipulating Factors

- We can make new factors out of an existing factor
- Our first operation: we can assign some or all of the variables of a factor.
 - $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in dom(X_1)$, is a factor on X_2, \dots, X_j .
 - $f(X_1 = v_1, X_2 = v_2, \dots, X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .
- The former is also written as $f(X_1, X_2, \dots, X_j)_{X_1 = v_1, \dots, X_j = v_j}$

Example factors

	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X,Y,Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X{=}t,Y,Z){:}\begin{array}{|c|c|c|}\hline Y & Z & \mathsf{val} \\ \mathsf{t} & \mathsf{t} & \mathsf{0.1} \\ \mathsf{t} & \mathsf{f} & \mathsf{0.9} \\ \mathsf{f} & \mathsf{t} & \mathsf{0.2} \\ \mathsf{f} & \mathsf{f} & \mathsf{0.8} \\ \hline \end{array}$$

$$r(X=t,Y,Z=f)$$
: $\begin{bmatrix} Y & \text{val} \\ t & 0.9 \\ f & 0.8 \end{bmatrix}$ $r(X=t,Y=f,Z=f)=0.8$

Summing out variables

Our second operation: we can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_i)$, resulting in a factor on X_2, \ldots, X_i defined by:

$$\left(\sum_{X_1} f\right) (X_2, \dots, X_j)$$

$$= f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$$

Summing out a variable example

	A	B	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
<i>f</i> ₃ :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	A	C	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
	f	t	0.54
	f	f	0.46

Multiplying factors

- Our third operation: factors can be multiplied together.
- The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

• Note: it's defined on all $\overline{X}, \overline{Y}, \overline{Z}$ triples, obtained by multiplying together the appropriate pair of entries from f_1 and f_2 .

Multiplying factors example

	A	B	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	B	C'	val
	t	t	0.3
f_2 :	t	f	0.7
_	f	t	0.6
	f	f	0.4

	A	B	C	val
	t	t	t	0.03
	t	t	f	0.07
$f_1 \times f_2$:	t	f	t	0.54
	t	f	f	0.36
- 0-	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32