
Recap A∗ Analysis Branch & Bound A∗ Tricks

Search: Advanced Topics and Conclusion

CPSC 322 – Search 6

Textbook §3.6

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 1



Recap A∗ Analysis Branch & Bound A∗ Tricks

Lecture Overview

1 Recap

2 A∗ Analysis

3 Branch & Bound

4 A∗ Tricks

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 2



Recap A∗ Analysis Branch & Bound A∗ Tricks

A∗ Search

A∗ search uses both path costs and heuristic values

cost(p) is the cost of the path p.
h(p) estimates the cost from the end of p to a goal.

Let f(p) = cost(p) + h(p).

f(p) estimates the total path cost of going from a start node
to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f(p)

A∗ treats the frontier as a priority queue ordered by f(p).

It always selects the node on the frontier with the lowest
estimated total distance.

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 3



Recap A∗ Analysis Branch & Bound A∗ Tricks

Lecture Overview

1 Recap

2 A∗ Analysis

3 Branch & Bound

4 A∗ Tricks

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 4



Recap A∗ Analysis Branch & Bound A∗ Tricks

A∗ is optimal

Theorem

If A∗ selects a path p, p is the shortest (i.e., lowest-cost) path.

Assume for contradiction that some other path p′ is actually
the shortest path to a goal

Consider the moment just before p is chosen from the frontier.
Some part of path p′ will also be on the frontier; let’s call this
partial path p′′.

Because p was expanded before p′′, f(p) ≤ f(p′′).

Because p is a goal, h(p) = 0. Thus
cost(p) ≤ cost(p′′) + h(p′′).
Because h is admissible, cost(p′′) + h(p′′) ≤ cost(p′) for any
path p′ to a goal that extends p′′

Thus cost(p) ≤ cost(p′) for any other path p′ to a goal. This
contradicts our assumption that p′ is the shortest path.

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 5



Recap A∗ Analysis Branch & Bound A∗ Tricks

A∗ is optimally efficient

We can prove something even stronger about A∗: in a sense
(given the particular heuristic that is available) no search
algorithm could do better!

Optimal Efficiency: Among all optimal algorithms that start
from the same start node and use the same heuristic h, A∗

expands the minimal number of paths.

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 6



Recap A∗ Analysis Branch & Bound A∗ Tricks

Lecture Overview

1 Recap

2 A∗ Analysis

3 Branch & Bound

4 A∗ Tricks

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 7



Recap A∗ Analysis Branch & Bound A∗ Tricks

Branch-and-Bound Search

A search strategy often not covered in AI, but widely used in
practice

Depth-first: modest memory demands

Uses a heuristic function: like A∗, can avoid expanding some
unnecessary paths

in fact, some people see “branch and bound” as a broad family
that includes A∗

these people would use the term “depth-first branch and
bound”

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 8



Recap A∗ Analysis Branch & Bound A∗ Tricks

Branch-and-Bound Search Algorithm

Follow exactly the same search path as depth-first search

treat the frontier as a stack: expand the most-recently added
path first
the order in which neighbors are expanded can be governed by
some arbitrary node-ordering heuristic

Keep track of a lower bound and upper bound on solution
cost at each path

lower bound: LB(p) = cost(p) + h(p)
upper bound: UB = cost(p′), where p′ is the best solution
found so far.

if no solution has been found yet, set the upper bound to ∞.

When a path p is selected for expansion:
if LB(p) ≥ UB, remove p from frontier without expanding it

this is called “pruning the search tree” (really!)

else expand p, adding all of its neighbours to the frontier

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 9



Recap A∗ Analysis Branch & Bound A∗ Tricks

Branch and Bound Example

http://aispace.org/search/

Example: Load from URL http://cs.ubc.ca/~kevinlb/
teaching/cs322/BnBSearchDemo.xml

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 10

http://aispace.org/search/
http://cs.ubc.ca/~kevinlb/teaching/cs322/BnBSearchDemo.xml
http://cs.ubc.ca/~kevinlb/teaching/cs322/BnBSearchDemo.xml


Recap A∗ Analysis Branch & Bound A∗ Tricks

Branch-and-Bound Analysis

Completeness: no, for the same reasons that DFS isn’t
complete

however, for many problems of interest there are no infinite
paths and no cycles
hence, for many problems B&B is complete

Time complexity: O(bm)
Space complexity: O(bm)

Branch & Bound has the same space complexity as DFS
this is a big improvement over A∗!

Optimality: yes.

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 11



Recap A∗ Analysis Branch & Bound A∗ Tricks

Lecture Overview

1 Recap

2 A∗ Analysis

3 Branch & Bound

4 A∗ Tricks

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 12



Recap A∗ Analysis Branch & Bound A∗ Tricks

Other A∗ Enhancements

The main problem with A∗ is that it uses exponential space.
Branch and bound was one way around this problem. Are there
others?

Iterative deepening

Memory-bounded A∗

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 13



Recap A∗ Analysis Branch & Bound A∗ Tricks

Iterative Deepening

B & B can still get stuck in cycles

Search depth-first, but to a fixed depth

set a maximum path length
augment branch and bound algorithm so that it also prunes
paths that exceed the maximum length
if you don’t find a solution, increase the maximum path length
and try again

Counter-intuitively, the asymptotic complexity is not changed,
even though we visit paths multiple times

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 14



Recap A∗ Analysis Branch & Bound A∗ Tricks

Memory-bounded A∗

Iterative deepening and B & B use a tiny amount of memory

what if we’ve got more memory to use?

keep as much of the fringe in memory as we can

if we have to delete something:

delete the oldest paths
“back them up” to a common ancestor

Search: Advanced Topics and Conclusion CPSC 322 – Search 6, Slide 15


	Recap
	A* Analysis
	Branch & Bound
	A* Tricks

