Search: Advanced Topics and Conclusion

CPSC 322 - Search 6

Textbook $\S 3.6$

Lecture Overview

(1) Recap

(2) A^{*} Analysis
(3) Branch \& Bound
(4) A^{*} Tricks

A^{*} Search

- A^{*} search uses both path costs and heuristic values
- $\operatorname{cost}(p)$ is the cost of the path p.
- $h(p)$ estimates the cost from the end of p to a goal.
- Let $f(p)=\operatorname{cost}(p)+h(p)$.
- $f(p)$ estimates the total path cost of going from a start node to a goal via p.

- A^{*} treats the frontier as a priority queue ordered by $f(p)$.
- It always selects the node on the frontier with the lowest estimated total distance.

Lecture Overview

(1) Recap
(2) A^{*} Analysis
(3) Branch \& Bound
(4) A^{*} Tricks

A^{*} is optimal

Theorem

If A^{*} selects a path p, p is the shortest (i.e., lowest-cost) path.

- Assume for contradiction that some other path p^{\prime} is actually the shortest path to a goal
- Consider the moment just before p is chosen from the frontier. Some part of path p^{\prime} will also be on the frontier; let's call this partial path $p^{\prime \prime}$.
- Because p was expanded before $p^{\prime \prime}, f(p) \leq f\left(p^{\prime \prime}\right)$.
- Because p is a goal, $h(p)=0$. Thus $\operatorname{cost}(p) \leq \operatorname{cost}\left(p^{\prime \prime}\right)+h\left(p^{\prime \prime}\right)$.
- Because h is admissible, $\operatorname{cost}\left(p^{\prime \prime}\right)+h\left(p^{\prime \prime}\right) \leq \operatorname{cost}\left(p^{\prime}\right)$ for any path p^{\prime} to a goal that extends $p^{\prime \prime}$
- Thus $\operatorname{cost}(p) \leq \operatorname{cost}\left(p^{\prime}\right)$ for any other path p^{\prime} to a goal. This contradicts our assumption that p^{\prime} is the shortest path.

A^{*} is optimally efficient

- We can prove something even stronger about A^{*} : in a sense (given the particular heuristic that is available) no search algorithm could do better!
- Optimal Efficiency: Among all optimal algorithms that start from the same start node and use the same heuristic h, A^{*} expands the minimal number of paths.

Lecture Overview

(1) Recap

(2) A^{*} Analysis
(3) Branch \& Bound
(4) A^{*} Tricks

Branch-and-Bound Search

- A search strategy often not covered in AI, but widely used in practice
- Depth-first: modest memory demands
- Uses a heuristic function: like A^{*}, can avoid expanding some unnecessary paths
- in fact, some people see "branch and bound" as a broad family that includes A^{*}
- these people would use the term "depth-first branch and bound"

Branch-and-Bound Search Algorithm

- Follow exactly the same search path as depth-first search
- treat the frontier as a stack: expand the most-recently added path first
- the order in which neighbors are expanded can be governed by some arbitrary node-ordering heuristic
- Keep track of a lower bound and upper bound on solution cost at each path
- lower bound: $L B(p)=\operatorname{cost}(p)+h(p)$
- upper bound: $U B=\operatorname{cost}\left(p^{\prime}\right)$, where p^{\prime} is the best solution found so far.
- if no solution has been found yet, set the upper bound to ∞.
- When a path p is selected for expansion:
- if $L B(p) \geq U B$, remove p from frontier without expanding it
- this is called "pruning the search tree" (really!)
- else expand p, adding all of its neighbours to the frontier

Branch and Bound Example

- http://aispace.org/search/
- Example: Load from URL http://cs.ubc.ca/~kevinlb/ teaching/cs322/BnBSearchDemo.xml

Branch-and-Bound Analysis

- Completeness: no, for the same reasons that DFS isn't complete
- however, for many problems of interest there are no infinite paths and no cycles
- hence, for many problems B\&B is complete
- Time complexity: $O\left(b^{m}\right)$
- Space complexity: $O(b m)$
- Branch \& Bound has the same space complexity as DFS
- this is a big improvement over A^{*} !
- Optimality: yes.

Lecture Overview

(1) Recap

(2) A^{*} Analysis
(3) Branch \& Bound
(4) A^{*} Tricks

Other A^{*} Enhancements

The main problem with A^{*} is that it uses exponential space. Branch and bound was one way around this problem. Are there others?

- Iterative deepening
- Memory-bounded $A *$

Iterative Deepening

- B \& B can still get stuck in cycles
- Search depth-first, but to a fixed depth
- set a maximum path length
- augment branch and bound algorithm so that it also prunes paths that exceed the maximum length
- if you don't find a solution, increase the maximum path length and try again
- Counter-intuitively, the asymptotic complexity is not changed, even though we visit paths multiple times

Memory-bounded $A *$

- Iterative deepening and B \& B use a tiny amount of memory
- what if we've got more memory to use?
- keep as much of the fringe in memory as we can
- if we have to delete something:
- delete the oldest paths
- "back them up" to a common ancestor

