Search: A^*

CPSC 322 - Search 5

Textbook §3.6

Search: A^*

CPSC 322 – Search 5, Slide 1

∃ のへぐ

Lecture Overview

2 A^* Search

3 Optimality of A^*

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ CPSC 322 - Search 5, Slide 2

3

Search with Costs

- Sometimes there are costs associated with arcs.
 - The cost of a path is the sum of the costs of its arcs.
- In this setting we often don't just want to find just any solution
 - Instead, we usually want to find the solution that minimizes cost
- We call a search algorithm which always finds such a solution optimal

(E) → (E) →

Heuristic Search

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest path from node n to a goal node.

- h can be extended to paths: $h(\langle n_0,\ldots,n_k\rangle)=h(n_k)$
- h(n) uses only readily obtainable information (that is easy to compute) about a node.

Definition (admissible heuristic)

A search heuristic h(n) is admissible if it is never an overestimate of the cost from n to a goal.

- there is never a path from n to a goal that has path length less than $h(n). \label{eq:hard_star}$
- another way of saying this: h(n) is a lower bound on the cost of getting from n to the nearest goal.

How to Construct a Heuristic

- Overall, a cost-minimizing search problem is a constrained optimization problem
- A relaxed version of the problem is a version of the problem where one or more constraints have been dropped
- It's usually possible to identify constraints which, when dropped, make the problem extremely easy to solve

E 🖌 🖌 E 🕨

Lecture Overview

3 Optimality of A^*

CPSC 322 – Search 5, Slide 6

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

A cool example

- A^{*} search applied to "infinite Mario":
 - http://aigamedev.com/open/interviews/mario-ai/
 - http://www.doc.ic.ac.uk/~rb1006/projects:marioai
- ... Thanks to Phillip Mah!

3

A^* Search

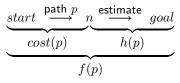
- A^* search uses both path costs and heuristic values
 - cost(p) is the cost of the path p.
 - h(p) estimates the cost from the end of p to a goal.

æ

個 と く ヨ と く ヨ と …

A^* Search

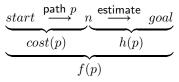
- A* search uses both path costs and heuristic values
 - cost(p) is the cost of the path p.
 - h(p) estimates the cost from the end of p to a goal.
- Let f(p) = cost(p) + h(p).
 - f(p) estimates the total path cost of going from a start node to a goal via p.



個 と く ヨ と く ヨ と

A^* Search

- A^* search uses both path costs and heuristic values
 - cost(p) is the cost of the path p.
 - $\bullet \ h(p)$ estimates the cost from the end of p to a goal.
- Let f(p) = cost(p) + h(p).
 - f(p) estimates the total path cost of going from a start node to a goal via p.



- A^* treats the frontier as a priority queue ordered by f(p).
 - It always selects the node on the frontier with the lowest estimated total distance.

個 と く ヨ と く ヨ と …

A^* Example

http://aispace.org/search/

- simple tree graph
- delivery robot (acyclic) graph

æ

- < ∃ >

< A

Let's assume that arc costs are strictly positive.

• Completeness:

æ

< 注→ < 注→

- ∢ 🗗 ト

Let's assume that arc costs are strictly positive.

- Completeness: yes.
- Time complexity:

< 67 ▶

Let's assume that arc costs are strictly positive.

- Completeness: yes.
- Time complexity: $O(b^m)$
 - the heuristic could be completely uninformative and the edge costs could all be the same, meaning that A^{\ast} does the same thing as BFS
- Space complexity:

Let's assume that arc costs are strictly positive.

- Completeness: yes.
- Time complexity: $O(b^m)$
 - the heuristic could be completely uninformative and the edge costs could all be the same, meaning that A^{\ast} does the same thing as BFS
- Space complexity: $O(b^m)$
 - like BFS, A^{\ast} maintains a frontier which grows with the size of the tree
- Optimality:

Let's assume that arc costs are strictly positive.

- Completeness: yes.
- Time complexity: $O(b^m)$
 - the heuristic could be completely uninformative and the edge costs could all be the same, meaning that A^{\ast} does the same thing as BFS
- Space complexity: $O(b^m)$
 - like BFS, A^{\ast} maintains a frontier which grows with the size of the tree
- Optimality: yes.

Lecture Overview

æ

.≣⇒

< 🗗 🕨

Search: A^*

Optimality¹ of A^*

If A^\ast returns a solution, that solution is guaranteed to be optimal, as long as

- the branching factor is finite
- arc costs are strictly positive
- h(n) is an underestimate of the length of the shortest path from n to a goal node, and is non-negative

¹Some literature, and the textbook, uses the word "admissiblity" here.

Why is A^* optimal?

Theorem

If A^* selects a path p, p is the shortest (i.e., lowest-cost) path.

- Assume for contradiction that some other path p^\prime is actually the shortest path to a goal
- Consider the moment just before p is chosen from the frontier. Some part of path p' will also be on the frontier; let's call this partial path p''.
- Because p was expanded before p'', $f(p) \leq f(p'')$.
- Because p is a goal, h(p) = 0. Thus $cost(p) \le cost(p'') + h(p'')$.
- Because h is admissible, $cost(p'')+h(p'')\leq cost(p')$ for any path p' to a goal that extends p''
- Thus $cost(p) \le cost(p')$ for any other path p' to a goal. This contradicts our assumption that p' is the shortest path.