Propositional Logic: Semantics and an Example

CPSC 322 - Logic 2

Textbook §5.2

Propositional Logic: Semantics and an Example

CPSC 322 - Logic 2, Slide 1

3

- ∢ ≣ ▶

Lecture Overview

Propositional Definite Clause Logic: Semantics

3 Using Logic to Model the World

3

・ 回 ト ・ ヨ ト ・ ヨ ト

Definition (atom)

An atom is a symbol starting with a lower case letter

Propositional Logic: Semantics and an Example

CPSC 322 - Logic 2, Slide 3

æ

白 と く ヨ と く ヨ と …

Definition (atom)

An atom is a symbol starting with a lower case letter

Definition (body)

A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

回 と く ヨ と く ヨ と …

Definition (atom)

An atom is a symbol starting with a lower case letter

Definition (body)

A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

Definition (definite clause)

A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body. (Read this as "h if b.")

・回 ・ ・ ヨ ・ ・ ヨ ・ …

Definition (atom)

An atom is a symbol starting with a lower case letter

Definition (body)

A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

Definition (definite clause)

A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body. (Read this as "h if b.")

Definition (knowledge base)

A knowledge base is a set of definite clauses

< ≞ >

Lecture Overview

2 Propositional Definite Clause Logic: Semantics

Osing Logic to Model the World

3

・日・ ・ ヨ・ ・ ヨ・

Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

Propositional Logic: Semantics and an Example

토 🕨 🗶 토 🕨 👘

Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses and knowledge bases:

Definition (truth values of statements)

- A body $b_1 \wedge b_2$ is true in I if and only if b_1 is true in I and b_2 is true in I.
- A rule h ← b is false in I if and only if b is true in I and h is false in I.
- A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

Models and Logical Consequence

Definition (model)

A model of a set of clauses is an interpretation in which all the clauses are *true*.

白 と く ヨ と く ヨ と …

Models and Logical Consequence

Definition (model)

A model of a set of clauses is an interpretation in which all the clauses are *true*.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is *true* in every model of KB.

- we also say that g logically follows from KB, or that KB entails g.
- In other words, $KB \models g$ if there is no interpretation in which KB is *true* and g is *false*.

イロン イボン イヨン イヨン 三日

Example: Models

$$KB = \begin{cases} p \leftarrow q, \\ q, \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

Which interpretations are models?

イロト イヨト イヨト イヨト

æ

Example: Models

i.

$$KB = \begin{cases} p \leftarrow q, \\ q, \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

is a model of KBnot a model of KBis a model of KBis a model of KBnot a model of KB

æ

イロン イヨン イヨン イヨン

Example: Models

i.

$$KB = \begin{cases} p \leftarrow q, \\ q, \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

is a model of KBnot a model of KBis a model of KBis a model of KBnot a model of KB

Which of the following is true?

•
$$KB \models q$$
, $KB \models p$, $KB \models s$, $KB \models r$

æ

回 と く ヨ と く ヨ と

Example: Models

i.

$$KB = \begin{cases} p \leftarrow q, \\ q, \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

is a model of KBnot a model of KBis a model of KBis a model of KBnot a model of KB

Which of the following is true?

•
$$KB \models q$$
, $KB \models p$, $KB \models s$, $KB \models r$

•
$$KB \models q$$
, $KB \models p$, $KB \not\models s$, $KB \not\models r$

æ

回 と く ヨ と く ヨ と

Lecture Overview

Propositional Definite Clause Logic: Semantics

3 Using Logic to Model the World

Proofs

Propositional Logic: Semantics and an Example

3

・ 回 と ・ ヨ と ・ モ と …

User's view of Semantics

- Choose a task domain: intended interpretation.
- Associate an atom with each proposition you want to represent.
- Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 4 Ask questions about the intended interpretation.
- If $KB \models g$, then g must be true in the intended interpretation.
- The user can interpret the answer using their intended interpretation of the symbols.

3

白 と く ヨ と く ヨ と

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
 - All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
 - If $KB \models g$ then g must be true in the intended interpretation.
 - If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.

< 注 → < 注 → ...

Electrical Environment

æ

Representing the Electrical Environment

$liaht l_1$.	$live_l_1 \leftarrow live_w_0$
light l ₂	$live_w_0 \leftarrow live_w_1 \land up_s_2.$
$down s_1$	$live_w_0 \leftarrow live_w_2 \land down_s_2.$
un so	$live_w_1, \leftarrow live_w_3 \land up_s_1.$
up_{-s_2}	$live_w_2 \leftarrow live_w_3 \land down_s_1.$
ap_33.	$live_l_2 \leftarrow live_w_4.$
$ok l_2$	$live_w_4 \leftarrow live_w_3 \land up_s_3.$
ok_t2.	$live_p_1 \leftarrow live_w_3.$
ok_{-co_1}	$live_w_3 \leftarrow live_w_5 \land ok_cb_1.$
line outoide	$live_p_2 \leftarrow live_w_6.$
inve_ouiside.	$live_w_6 \leftarrow live_w_5 \land ok_cb_2.$
	$live_w_5 \leftarrow live_outside.$

æ

・日・ ・ ヨ・ ・ ヨ・

Role of semantics

In user's mind:

- *l2_broken*: light *l*2 is broken
- $sw3_up$: switch is up
- *power*: there is power in the building
- *unlit_l*2: light *l*2 isn't lit
- *lit_l*1: light *l*1 is lit

In Computer:

Conclusion: $l2_broken$

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbols using their meaning

3

回 と く ヨ と く ヨ と …

Lecture Overview

Propositional Definite Clause Logic: Semantics

3 Using Logic to Model the World

3

Recap: Syntax	PDC: Semantics	Using Logic to Model the World	Proofs
Proofs			

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.

Definition (soundness)

A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.

Definition (completeness)

A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.

白 と く ヨ と く ヨ と …