Recap

Decision Theory: Sequential Decisions

CPSC 322 - Decision Theory 2

Textbook §9.3

Decision Theory: Sequential Decisions

> < □ > < ≡ > < ≡ > = ⇒ ⊂ ⊂ < CPSC 322 - Decision Theory 2, Slide 1

Lecture Overview

Decision Theory: Sequential Decisions

CPSC 322 - Decision Theory 2, Slide 2

æ

白 ト く ヨ ト く ヨ ト

Decision Variables

- Decision variables are like random variables that an agent gets to choose the value of.
- A possible world specifies the value for each decision variable and each random variable.
- For each assignment of values to all decision variables, the measures of the worlds satisfying that assignment sum to 1.
- The probability of a proposition is undefined unless you condition on the values of all decision variables.

Single-Stage decisions

- Given a single decision variable, the agent can choose D = d_i for any d_i ∈ dom(D).
- The expected utility of decision $D = d_i$ is $\mathbb{E}(U|D = d_i)$.
- An optimal single decision is the decision $D = d_{max}$ whose expected utility is maximal:

$$d_{max} = \underset{d_i \in dom(D)}{\arg \max} \mathbb{E}(U|D = d_i).$$

白 と く ヨ と く ヨ と …

Decision Networks

- A decision network is a graphical representation of a finite sequential decision problem.
- Decision networks extend belief networks to include decision variables and utility.
- A decision network specifies what information is available when the agent has to act.
- A decision network specifies which variables the utility depends on.

Decision Networks

- A random variable is drawn as an ellipse. Arcs into the node represent probabilistic dependence.
- A decision variable is drawn as an rectangle. Arcs into the node represent information available when the decision is made.
- A value node is drawn as a diamond. Arcs into the node represent values that the value depends on.

Recap

Finding the optimal decision

• Suppose the random variables are X_1, \ldots, X_n , and utility depends on X_{i_1}, \ldots, X_{i_k}

$$\mathbb{E}(U|D) = \sum_{X_1,\dots,X_n} P(X_1,\dots,X_n|D)U(X_{i_1},\dots,X_{i_k})$$
$$= \sum_{X_1,\dots,X_n} \prod_{i=1}^n P(X_i|pX_i,D)U(X_{i_1},\dots,X_{i_k})$$

To find the optimal decision:

- Create a factor for each conditional probability and for the utility
- Sum out all of the random variables
- $\bullet\,$ This creates a factor on D that gives the expected utility for each D
- Choose the D with the maximum value in the factor.

			Which	Way	Accident		Pro	obability
Accident	\sim		long		true		0.0)1
Which Way	Utility		long		false		0.9	9
Wear Pads			short		true		0.2	2
wear 1 aus			short		false		0.8	3
	Which Way	Ac	cident	Wear	Pads	Util	ity	
	long tru		e	true		30		
	long	tru	e	false		0		
	long	fal	se	true		75		
	long	fal	se	false		80		
	short	tru	e	true		35		
	short	tru	e	false		3		
	short	fal	se	true		95		
	short	fal	se	false		100		

▶ < 도 ▶ < 도 ▶</p>

	_		Whic	h Way	Acci	dent	Pro	obability	
Accident	2		long		true		0.0)1	1
Which Way	Utili	ry 🔪	long		false		0.9	9	
Wear Pads	,		short		true		0.2	2	
wear Paas			short		false		0.8	3	
	Which W	'ay Ac	cident	Wear	Pads	Util	ity		
	long	trı	ie	true		30			
	long	trι	le	false		0			
	long	fal	se	true		75			
	long	fal	se	false		80			
	short	trı	le	true		35			
	short	trı	le	false		3			
	short	fal	se	true		95			
	short	fal	se	false		100			
		Which	Way	Wear pa	ads	Value	5		
	ĺ	long		true		0.01*30+		0.99*75=	74.55
Sum out Accident:		long		false		0.01*0+0.99*80=7		9.2	
		short		true		0.2*3	5+0	.8*95=83	
		short		false		0.2*3	s+0.8	8*100=80	.6

æ

▶ < 별 ▶ < 별 ▶</p>

			Whic	h Way	Acci	dent	Pro	obability	1
Accident		long		true	true false)1	1	
Which Way	ny	long		false			99		
Wear Pads	. ~		short		true		0.2		
wear raas			short		false		0.8	3	
	Which W	'av Ac	cident	Wear	Pads	Util	ity		,
	long	tru	ie	true		30			
	long	trι	ie	false		0			
long		fal	se	true		75			
	long	fal	se	false		80			
	short	tru	ie	true		35			
	short	trı	ie	false		3			
	short	fal	se	true		95			
	short	fal	se	false		100			
		Which	Way	Wear p	ads	Value	9		
		long		true	true		0.01*30+0.99*75=74.55		
Sum out Accident:		long		false		0.01*0+0.99*80=79.2			79.2
		short		true				.8*95=83	
	l	short		false		0.2*3	+0.8	8*100=80	0.6

æ

▶ < 별 ▶ < 별 ▶</p>

Accident	Utility		long	h Way	Accie true false	dent	Pro 0.0 0.9		
Which Way			long					-	
Wear Pads			short	true		-			
			short		false		0.8	3	ļ
	Which Wa	ау Ас	cident	Wear	Pads	Util	ity		
	long	tru	ie	true		30			
	long	tru	ie	false		0			
	long	fal	se	true		75			
	long	fal	se	false		80			
	short	tru	ie	true		35			
	short	tru	ie	false		3			
	short	fal	se	true		95			
	short	fal	se	false		100			
	[Which	Way	Wear p	ads	Value	5		
	l l	long		true		0.01*30+0.99*75=74.55			74.55
Sum out Accident:		long		false		0.01*0+0.99*80=79.2			9.2
		short		true		0.2*3	5+0	.8*95= <mark>83</mark>	
		short		false		0.2*3	s+0.8	8*100=80	.6

Thus the optimal policy is to take the short way and wear pads, with an expected

utility of 83.

Lecture Overview

Decision Theory: Sequential Decisions

CPSC 322 - Decision Theory 2, Slide 9

æ

▶ < 문 ▶ < 문 ▶</p>

Sequential Decisions

- An intelligent agent doesn't make a multi-step decision and carry it out without considering revising it based on future information.
- A more typical scenario is where the agent: observes, acts, observes, acts, ...
 - just like your final homework!
- Subsequent actions can depend on what is observed.
 - What is observed depends on previous actions.
- Often the sole reason for carrying out an action is to provide information for future actions.
 - For example: diagnostic tests, spying.

- A sequential decision problem consists of a sequence of decision variables D_1, \ldots, D_n .
- Each D_i has an information set of variables pD_i , whose value will be known at the time decision D_i is made.

- What should an agent do?
 - What an agent should do at any time depends on what it will do in the future.
 - What an agent does in the future depends on what it did before.

Policies

- A policy specifies what an agent should do under each circumstance.
- A policy is a sequence $\delta_1, \ldots, \delta_n$ of decision functions

$$\delta_i : dom(pD_i) \to dom(D_i).$$

This policy means that when the agent has observed $O \in dom(pD_i)$, it will do $\delta_i(O)$.

同 と く ヨ と く ヨ と

Expected Value of a Policy

- Possible world ω satisfies policy δ, written ω ⊨ δ, if the world assigns the value to each decision node that the policy specifies.
- The expected utility of policy δ is

$$\mathbb{E}(U|\delta) = \sum_{\omega \models \delta} P(\omega) U(\omega)$$

• An optimal policy is one with the highest expected utility:

$$\delta^* \in \arg\max_{\delta} \mathbb{E}(U|\delta).$$

向下 イヨト イヨト

Recap

• If a decision D has k binary parents, how many assignments of values to the parents are there?

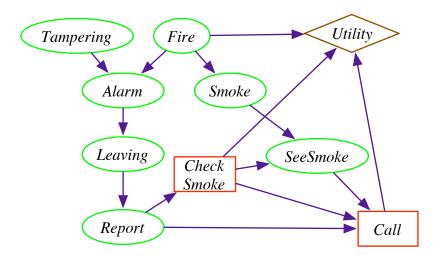
白 ト く ヨ ト く ヨ ト

Recap

• If a decision D has k binary parents, how many assignments of values to the parents are there? 2^k

- If a decision D has k binary parents, how many assignments of values to the parents are there? 2^k
- If there are *b* possible actions, how many different decision functions are there?

Recap


- If a decision D has k binary parents, how many assignments of values to the parents are there? 2^k
- If there are b possible actions, how many different decision functions are there? b^{2^k}

- If a decision D has k binary parents, how many assignments of values to the parents are there? 2^k
- If there are b possible actions, how many different decision functions are there? b^{2^k}
- If there are *d* decisions, each with *k* binary parents and *b* possible actions, how many policies are there?

- If a decision D has k binary parents, how many assignments of values to the parents are there? 2^k
- If there are b possible actions, how many different decision functions are there? b^{2^k}
- If there are d decisions, each with k binary parents and b possible actions, how many policies are there? $(b^{2^k})^d$

- If a decision D has k binary parents, how many assignments of values to the parents are there? 2^k
- If there are b possible actions, how many different decision functions are there? b^{2^k}
- If there are d decisions, each with k binary parents and b possible actions, how many policies are there? $(b^{2^k})^d$

Decision Network for the Alarm Problem

Decision Theory: Sequential Decisions

æ