CSPs: Arc Consistency

CPSC 322 - CSPs 3

Textbook §4.5

CSPs: Arc Consistency

CPSC 322 - CSPs 3, Slide 1

æ.

・ロ・・ 日本・ ・ 日本・ ・ 日本・

Lecture Overview

2 Consistency

CPSC 322 - CSPs 3, Slide 2

æ

→ 御 → → 注 → → 注 →

CSPs: Arc Consistency

Constraint Satisfaction Problems: Definition

Definition

- A constraint satisfaction problem consists of:
 - a set of variables
 - a domain for each variable
 - a set of constraints

Definition

A model of a CSP is an assignment of values to variables that satisfies all of the constraints.

聞 と く ヨ と く ヨ と …

We map CSPs into search problems:

- nodes: assignments of values to a subset of the variables
- neighbours of a node: nodes in which values are assigned to one additional variable
- start node: the empty assignment (no variables assigned values)
- goal node: a node which assigns a value to each variable, and satisfies all of the constraints

Note: the path to a goal node is not important

글 에 에 글 에 다

Lecture Overview

æ

(1日) (1日) (日)

CSPs: Arc Consistency

Consistency Algorithms

• Idea: prune the domains as much as possible before selecting values from them.

Definition

A variable is domain consistent if no value of the domain of the node is ruled impossible by any of the constraints.

Example: dom(B) = {1, 2, 3, 4} isn't domain consistent if we have the constraint B ≠ 3.

個 と く ヨ と く ヨ と …

Constraint Networks

- Domain consistency only talked about constraints involving a single variable
 - what can we say about constraints involving multiple variables?

Definition

- A constraint network is defined by a graph, with
 - one node for every variable
 - one node for every constraint

and undirected edges running between variable nodes and constraint nodes whenever a given variable is involved in a given constraint.

- When all of the constraints are binary, constraint nodes are not necessary: we can drop constraint nodes and use edges to indicate that a constraint holds between a pair of variables.
 - why can't we do the same with general k-ary constraints?

Example Constraint Network



Recall:

- Variables: A, B, C
- Domains: $\{1, 2, 3, 4\}$
- Constraints: A < B, B < C

-

Lecture Overview

2 Consistency

CPSC 322 - CSPs 3, Slide 9

æ

CSPs: Arc Consistency

Arc Consistency

Definition

An arc $\langle X, r(X, \bar{Y}) \rangle$ is arc consistent if for each value of X in dom(X) there is some value \bar{Y} in $dom(\bar{Y})$ such that $r(X, \bar{Y})$ is satisfied.

- In symbols, $\forall X \in dom(X), \ \exists \bar{Y} \in dom(\bar{Y})$ such that $r(X, \bar{Y})$ is satisfied.
- A network is arc consistent if all its arcs are arc consistent.
- If an arc $\langle X, \bar{Y} \rangle$ is *not* arc consistent, all values of X in dom(X) for which there is no corresponding value in $dom(\bar{Y})$ may be deleted from dom(X) to make the arc $\langle X, \bar{Y} \rangle$ consistent.
 - This removal can never rule out any models (do you see why?)

▲ 臣 ▶ | ▲ 臣 ▶ | |

Arc Consistency Outcomes

- Three possible outcomes (when all arcs are arc consistent):
 - One domain is empty \Rightarrow no solution
 - Each domain has a single value \Rightarrow unique solution
 - $\bullet\,$ Some domains have more than one value $\Rightarrow\,$ may or may not be a solution
 - in this case, arc consistency isn't enough to solve the problem: we need to perform search

< 臣 > < 臣 > .

Arc Consistency Algorithm

- Consider the arcs in turn making each arc consistent.
 - An arc $\left\langle X,r(X,\bar{Y})\right\rangle$ needs to be revisited if the domain of Y is reduced.
- Regardless of the order in which arcs are considered, we will terminate with the same result: an arc consistent network.
- Worst-case complexity of this procedure:
 - ${\ensuremath{\, \bullet }}$ let the max size of a variable domain be d
 - ${\ensuremath{\, \bullet }}$ let the number of constraints be e
 - complexity is $O(ed^3)$
- Some special cases are faster
 - e.g., if the constraint graph is a tree, arc consistency is ${\cal O}(ed)$

★ E ► ★ E ►

Arc Consistency Algorithm (binary constraints case)

```
procedure AC(V, dom, R)
        Inputs
                V a set of variables
                dom: a function such that dom(X) is the domain of variable X
               R: set of relations to be satisfied
       Output
                arc consistent domains for each variable
        Local
                D_X is a set of values for each variable X
        for each variable X do
                D_X \leftarrow dom(X)
        end for each
        TDA \leftarrow \{\langle X, r \rangle | r \in R \text{ is a constraint that involves } X\}
        while TDA \neq \{\} do
                select \langle X, r \rangle \in TDA;
                TDA \leftarrow TDA - \{\langle X, r \rangle\}:
                ND_X \leftarrow \{x | x \in D_X \text{ and there is } \overline{y} \in D_{\overline{y}} \text{ such that } r(x, \overline{y})\};
                if ND_X \neq D_X then
                        TDA \leftarrow TDA \cup \{ \langle Z, r' \rangle | r' \neq r \text{ and } r' \text{ involves } X \text{ and } Z \neq X \};
                        D_{\mathbf{Y}} \leftarrow ND_{\mathbf{Y}}:
                end if
        end while
        return {D_X : X is a variable}
end procedure
```

CPSC 322 - CSPs 3, Slide 13

Adding edges back to TDA (binary constraints case)

• When we change the domain of a variable X in the course of making an arc $\langle X, r \rangle$ arc consistent, we add every arc $\langle Z, r' \rangle$ where r' involves X and:

•
$$r \neq r'$$

• $Z \neq X$

- Thus we don't add back the same arc:
 - This makes sense—it's definitely arc consistent.

- A IB N - A IB N - -

Adding edges back to TDA (binary constraints case)

- When we change the domain of a variable X in the course of making an arc $\langle X, r \rangle$ arc consistent, we add every arc $\langle Z, r' \rangle$ where r' involves X and:
 - $r \neq r'$ • $Z \neq X$
- We don't add back other arcs that involve the same variable ${\cal X}$
 - We've just *reduced* the domain of X
 - If an arc $\langle X,r\rangle$ was arc consistent before, it will still be arc consistent
 - in the "for all" we'll just check fewer values

▶ < 글 ▶ < 글 ▶</p>

Adding edges back to TDA (binary constraints case)

- When we change the domain of a variable X in the course of making an arc $\langle X, r \rangle$ arc consistent, we add every arc $\langle Z, r' \rangle$ where r' involves X and:
 - $r \neq r'$ • $Z \neq X$
- We don't add back other arcs that involve the same constraint and a different variable:
 - Imagine that such an arc—involving variable Y—had been arc consistent before, but was no longer arc consistent after X's domain was reduced.
 - This means that some value in $Y{\rm 's}$ domain could satisfy r only when X took one of the dropped values
 - But we dropped these values precisely because there were no values of Y that allowed r to be satisfied when X takes these values—contradiction!

▲□→ ▲ 国 → ▲ 国 →

Arc Consistency Example

•
$$dom(A) = \{1, 2, 3, 4\}; dom(B) = \{1, 2, 3, 4\}; dom(C) = \{1, 2, 3, 4\}$$

- Suppose you first select the arc ⟨A, A < B⟩.
 - Remove A = 4 from the domain of A.
 - Add nothing to TDA.
- Suppose that $\langle B, B < C \rangle$ is selected next.
 - Prune the value 4 from the domain of B.
 - Add (A, A < B) back into the TDA set (why?)
- Suppose that $\langle B, A < B \rangle$ is selected next.
 - Prune 1 from the domain of B.
 - Add no element to TDA (why?)
- Suppose the arc $\langle A, A < B \rangle$ is selected next
 - The value A = 3 can be pruned from the domain of A.
 - Add no element to TDA (why?)
- Select $\langle C, B < C \rangle$ next.
 - Remove 1 and 2 from the domain of C.
 - Add $\langle B, B < C \rangle$ back into the TDA set

The other two edges are arc consistent, so the algorithm terminates with $dom(A) = \{1, 2\}, dom(B) = \{2, 3\}, dom(C) = \{3, 4\}.$

CPSC 322 - CSPs 3, Slide 15