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Recap Hidden Markov Models

Variable elimination algorithm

To compute P (Q|Y1 = v1 ∧ . . . ∧ Yj = vj):

Construct a factor for each conditional probability.

Set the observed variables to their observed values.

For each of the other variables Zi ∈ {Z1, . . . , Zk}, sum out Zi

Multiply the remaining factors.

Normalize by dividing the resulting factor f(Q) by
∑

Q f(Q).
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Recap Hidden Markov Models

Variable elimination example

Compute P (G|H = h1). Elimination order: A, C, E,H, I, B, D, F

P (G, H) =
∑

A,B,C,D,E,F,I P (A, B, C, D, E, F, G, H, I)

P (G, H) =
∑

A,B,C,D,E,F,I P (A) · P (B|A) · P (C) · P (D|B, C) ·
P (E|C) · P (F |D) · P (G|F, E) · P (H|G) · P (I|G)

A

B
C

D

E

F

G

H I

f1(B) :=
∑

a∈dom(A) P (A = a) · P (B|A = a)

f2(B, D, E) :=
∑

c∈dom(C) P (C = c)·P (D|B, C = c)·P (E|C = c)

f3(B, D, F, G) :=
∑

e∈dom(E) f2(B, D, E = e) · P (G|F, E = e)

f4(G) := P (H = h1|G)

f5(G) :=
∑

i∈dom(I) P (I = i|G)

f6(D, F, G) :=
∑

b∈dom(B) f1(B = b) · f3(B = b, D, F, G)

f7(F, G) :=
∑

d∈dom(D) f6(D = d, F, G) · P (F |D = d)

f8(G) :=
∑

f∈dom(F ) f7(F = f, G)
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Variable elimination example
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∑
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Eliminate A: P (G, H) =
∑
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A

B
C

D

E

F

G

H I
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∑

e∈dom(E) f2(B, D, E = e) · P (G|F, E = e)
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∑

i∈dom(I) P (I = i|G)
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∑

b∈dom(B) f1(B = b) · f3(B = b, D, F, G)
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H I
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A
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H I
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Variable elimination example

Compute P (G|H = h1). Elimination order: A, C, E,H, I, B, D, F

P (G, H) =
∑
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A

B
C

D

E
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H I
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Variable elimination example

Compute P (G|H = h1). Elimination order: A, C, E,H, I, B, D, F
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∑
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A
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H I
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Variable elimination example

Compute P (G|H = h1). Elimination order: A, C, E,H, I, B, D, F

P (G, H = h1) =
∑

B,D,F f1(B) · f3(B, D, F, G) · P (F |D) · f4(G) · f5(G)

Eliminate B:

P (G, H = h1) =
∑

D,F f6(D, F, G) · P (F |D) · f4(G) · f5(G)

A

B
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H I
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∑
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f∈dom(F ) f7(F = f, G)
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Recap Hidden Markov Models

Variable elimination example

Compute P (G|H = h1). Elimination order: A, C, E,H, I, B, D, F

P (G, H = h1) =
∑

D,F f6(D, F, G) · P (F |D) · f4(G) · f5(G)

Eliminate D: P (G, H = h1) =
∑

F f7(F, G) · f4(G) · f5(G)

A

B
C

D

E

F

G

H I

f1(B) :=
∑

a∈dom(A) P (A = a) · P (B|A = a)

f2(B, D, E) :=
∑

c∈dom(C) P (C = c)·P (D|B, C = c)·P (E|C = c)

f3(B, D, F, G) :=
∑

e∈dom(E) f2(B, D, E = e) · P (G|F, E = e)

f4(G) := P (H = h1|G)

f5(G) :=
∑

i∈dom(I) P (I = i|G)

f6(D, F, G) :=
∑

b∈dom(B) f1(B = b) · f3(B = b, D, F, G)

f7(F, G) :=
∑

d∈dom(D) f6(D = d, F, G) · P (F |D = d)

f8(G) :=
∑

f∈dom(F ) f7(F = f, G)
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Recap Hidden Markov Models

Variable elimination example

Compute P (G|H = h1). Elimination order: A, C, E,H, I, B, D, F

P (G, H = h1) =
∑

F f7(F, G) · f4(G) · f5(G)

Eliminate F : P (G, H = h1) = f8(G) · f4(G) · f5(G)

A

B
C

D

E

F

G

H I

f1(B) :=
∑

a∈dom(A) P (A = a) · P (B|A = a)

f2(B, D, E) :=
∑

c∈dom(C) P (C = c)·P (D|B, C = c)·P (E|C = c)

f3(B, D, F, G) :=
∑

e∈dom(E) f2(B, D, E = e) · P (G|F, E = e)

f4(G) := P (H = h1|G)

f5(G) :=
∑

i∈dom(I) P (I = i|G)

f6(D, F, G) :=
∑

b∈dom(B) f1(B = b) · f3(B = b, D, F, G)

f7(F, G) :=
∑

d∈dom(D) f6(D = d, F, G) · P (F |D = d)

f8(G) :=
∑

f∈dom(F ) f7(F = f, G)
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Recap Hidden Markov Models

Variable elimination example

Compute P (G|H = h1). Elimination order: A, C, E,H, I, B, D, F

P (G, H = h1) = f8(G) · f4(G) · f5(G)

Normalize: P (G|H = h1) = P (G,H = h1)∑
g∈dom(G) P (G,H = h1)

A

B
C

D

E

F

G

H I

f1(B) :=
∑

a∈dom(A) P (A = a) · P (B|A = a)

f2(B, D, E) :=
∑

c∈dom(C) P (C = c)·P (D|B, C = c)·P (E|C = c)

f3(B, D, F, G) :=
∑

e∈dom(E) f2(B, D, E = e) · P (G|F, E = e)

f4(G) := P (H = h1|G)

f5(G) :=
∑

i∈dom(I) P (I = i|G)

f6(D, F, G) :=
∑

b∈dom(B) f1(B = b) · f3(B = b, D, F, G)

f7(F, G) :=
∑

d∈dom(D) f6(D = d, F, G) · P (F |D = d)

f8(G) :=
∑

f∈dom(F ) f7(F = f, G)
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Recap Hidden Markov Models

What good was Conditional Independence?

That’s great. . . but it looks incredibly painful for large graphs.

And. . . why did we bother learning conditional independence?
Does it help us at all?

yes—we use the chain rule decomposition right at the
beginning

Can we use our knowledge of conditional independence to
make this calculation even simpler?

yes—there are some variables that we don’t have to sum out
intuitively, they’re the ones that are “pre-summed-out” in our
tables
example: summing out I on the previous slide
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Recap Hidden Markov Models

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate
all leaf nodes that are neither observed nor queried, until we reach
a fixed point.

smokealarm

fire
Can we justify that on a three-
node graph—Fire, Alarm, and
Smoke—when we ask for:

P (Fire)?

P (Fire | Alarm)?

Hidden Markov Models CPSC 322 – Uncertainty 7, Slide 6



Recap Hidden Markov Models

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate
all leaf nodes that are neither observed nor queried, until we reach
a fixed point.

smokealarm

fire
Can we justify that on a three-
node graph—Fire, Alarm, and
Smoke—when we ask for:

P (Fire)?

P (Fire | Alarm)?

Hidden Markov Models CPSC 322 – Uncertainty 7, Slide 6



Recap Hidden Markov Models

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate
all leaf nodes that are neither observed nor queried, until we reach
a fixed point.

smokealarm

fire
Can we justify that on a three-
node graph—Fire, Alarm, and
Smoke—when we ask for:

P (Fire)?

P (Fire | Alarm)?

Hidden Markov Models CPSC 322 – Uncertainty 7, Slide 6



Recap Hidden Markov Models

Lecture Overview

1 Recap

2 Hidden Markov Models

Hidden Markov Models CPSC 322 – Uncertainty 7, Slide 7



Recap Hidden Markov Models

Markov chain

A Markov chain is a special sort of belief network:

S0 S1 S2 S3 S4

Thus P (St+1|S0, . . . , St) = P (St+1|St).

Often St represents the state at time t. Intuitively St conveys
all of the information about the history that can affect the
future states.

“The past is independent of the future given the present.”
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Recap Hidden Markov Models

Stationary Markov chain

S0 S1 S2 S3 S4

A stationary Markov chain is when for all t > 0, t′ > 0,
P (St+1|St) = P (St′+1|St′).

We specify P (S0) and P (St+1|St).

Simple model, easy to specify
Often the natural model
The network can extend indefinitely
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Recap Hidden Markov Models

Hidden Markov Model

A Hidden Markov Model (HMM) starts with a Markov chain,
and adds a noisy observation about the state at each time
step:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

P (S0) specifies initial conditions

P (St+1|St) specifies the dynamics

P (Ot|St) specifies the sensor model
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Recap Hidden Markov Models

Example: localization

Suppose a robot wants to determine its location based on its
actions and its sensor readings: Localization

This can be represented by the augmented HMM:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

A0 A1 A2 A3
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Recap Hidden Markov Models

Example localization domain

Circular corridor, with 16 locations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Doors at positions: 2, 4, 7, 11.

Noisy Sensors

Stochastic Dynamics

Robot starts at an unknown location and must determine
where it is.
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Recap Hidden Markov Models

Example Sensor Model

P (Observe Door | At Door) = 0.8
P (Observe Door | Not At Door) = 0.1
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Recap Hidden Markov Models

Example Dynamics Model

P (loct+1 = L|actiont = goRight ∧ loct = L) = 0.1
P (loct+1 = L + 1|actiont = goRight ∧ loct = L) = 0.8
P (loct+1 = L + 2|actiont = goRight ∧ loct = L) = 0.074
P (loct+1 = L′|actiont = goRight∧ loct = L) = 0.002 for any
other location L′.

All location arithmetic is modulo 16.
The action goLeft works the same but to the left.

Hidden Markov Models CPSC 322 – Uncertainty 7, Slide 14



Recap Hidden Markov Models

Combining sensor information

Example: we can combine information from a light sensor and
the door sensor: “Sensor Fusion”

S0 S1 S2 S3 S4

D0 D1 D2 D3 D4

L0 L1 L2 L3 L4

St: robot location at time t

Dt: door sensor value at time t

Lt: light sensor value at time t
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Recap Hidden Markov Models

Localization demo

http://www.cs.ubc.ca/spider/poole/demos/
localization/localization.html
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