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Lecture Overview

© Recap
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Recap

Variable elimination algorithm

To compute P(Q|Y1=v1 A ... ANYj=wv;):

Construct a factor for each conditional probability.

Set the observed variables to their observed values.

For each of the other variables Z; € {Z1,..., Zy}, sum out Z;
Multiply the remaining factors.

Normalize by dividing the resulting factor f(Q) by ZQ f(Q).
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Recap

Variable elimination example

Compute P(G|H = hy). Elimination order: A,C,E,H,I,B,D,F
® P(G,H)=Y, pcpuri P(ABCDEFGHTI)

® P(G,H) =3 4pcpper P(A)-PBIA)-P(C) P(D|B,C) -
P(E|C)- P(F|D)- P(G|F,E)- P(H|G)- P(I|G)
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Recap
Variable elimination example

Compute P(G|H = hy). Elimination order: A,C,E,H,I,B,D,F

® P(G,H) =3 4 pcpsr LA PBIA) - P(O) P(D|B,C):
P(E|C)- P(F|D)- P(G|F,E) - P(H|G) - P(I|G)

@ Eliminate A: P(G,H) =33 ¢ p pr; [1(B)- P(C)- P(D|B,C)-
P(E|C) - P(F|D) - P(G|F, E) - P(H|G) - P(I|G)

® fi(B) =3 .ciom P(A=a) - P(B|A=a)
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Recap
Variable elimination example

Compute P(G|H = hy). Elimination order: A,C,E,H,I,B,D,F
® P(G.H)=3 g cpprr/1(B) P(C) P(D|B,C)-PE|C) P(F|D)-
P(G|F,E) - P(H|G) - P(I|GQ)
@ Eliminate C: P(G,H) =
>5,p.5rr 1(B)- [2(B,D,E)- P(F|ID)-P(G|F,E) - P(H|G) - P(I|G)

° fl(B) = Zaedom(A) P(A:a) : P(B|A:(l)
® f2(B,D,E) =3} capme) P(C=¢)P(D|B,C=c) P(E|C=c)

e
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Recap
Variable elimination example

Compute P(G|H = hy). Elimination order: A,C,E,H,I,B,D,F
@ P(G,H)=
>p,perrf1(B)- [2(B,D,E)- P(FID)-P(G|F,E) - P(H|G) - P(I|G)
@ Eliminate E:
P(G,H) =35 pp;f1(B)- fs(B,D,F.G)-P(F|D)- P(H|G) - P(I|G)

i © fi(B) = Tucsoma) PA=a) - P(BlA=0)

! ® f5(B,D,E) =Y _yomc) P(C=0¢)-P(D|B,C =c)-P(E|C=c)
L/i ® f3(B,D,F,G) =3, coomp [2(B,D,E=¢) - P(G|F,E=e)
D
y E
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Recap
Variable elimination example

Compute P(G|H = hy). Elimination order: A,C,E,H,I,B,D,F
® P(G,H)=3 ppp;f1(B) fs(B,D,F,G)-P(F|D)- P(H|G) - P(I|G)

@ Observe H =hy:
P(G,H=h)=3p pr;[1(B) f3(B,D,F,G)-P(F|D)- fs(G)-P(I|G)

i ° fl(B) > acdom(ay P(A=a) - P(B|A=a)
= ® fo(B, D, E) =" caom(c) P(C=¢)-P(D|B,C=c)-P(E|C=c)
C e f3(B,D FG) Y ccdom(m) J2(B,D,E=¢) - P(G|F,E=e)
i/ o fi(G) = P(H=h|G)
y G
F
N
G
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Recap
Variable elimination example

Compute P(G|H = hy). Elimination order: A,C,E,H,I,B,D,F
® P(G,H=h1)=3p pp;1(B) f3(B,D,F,G)-P(F|D)- fs(G)-P(I|G)

@ Eliminate [:
P(G,H=h)=3p p p fi(B)- fs(B,D,F,G)- P(F|D)- fa(G) - f5(G)

i ® f1(B) = XY ucdom(a) P(A=a) - P(B|A=a)
= ® f2(B,D,E) =3 cqom(c) P(C=0¢)-P(D|B,C=c)-P(E|C=c¢)
¢/C ® f3(B,D FG) Zeedom (B) f2(B,D,E=e)- P(G|F,E=e)
D *] f4(G) —P(H hl‘G)
y G F5(@) = Xscaomeny PU=1IG)
F
N
G,
¥ X
H I
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Recap
Variable elimination example

Compute P(G|H = hy). Elimination order: A,C,E,H,I,B,D,F
® P(G.H=h1) =3 5 pp[i(B) fs(B,D,F.G) P(F|D)- fa(G) - f5(G)
@ Eliminate B:
P(G.H=h)=} p p [e(D,F,G) - P(F|D)- fa(G) - f5(G)

’i ® f1(B) =Y ucsoma) P(A=0a) - P(B|A=a)

Y ® f2(B,D,E) =Y cgomic) P(C=¢)-P(D|B,C=0) P(E|C=c)
¢/C ® f3(B,D FG) Y ccdom(p) f2(B, D, E=e) - P(G|F,E=e)

D o fi(G) = P(H=h|G)

v (

K (

E ° f5 G) zzedom(l) ( :/L|G)
< ® fo(D,F,G) =3 caomm [1(B=0) fs(B=b,D,F,G)
G,
¥ X
H 1
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Recap
Variable elimination example

Compute

P(G|H = hy). Elimination order: A,C,E,H,I,B,D,F

® P(G,H=M)=Ypp[e(D,F,G) P(F|D)- f2(G) - fs(G)
@ Eliminate D: P(G,H=h1) =Y, f(F.G) - fa(G) - f5(G)

C
e

les)

) — 0 €— 0 <—>

® fi(B) =2 acdoma) P(A=a)  P(B|A=a)

® f2(B,D,E) =3 ciom(c) P(C=0c)-P(D|B,C=c)-P(E|C=c)
O F(B.D.F.G)im Sy folB.D.E =) - P(GIF, E=c)

o 1i(G) = P(H=1G)

° f5(G):= Zzedom([) P(I=1|G)

® fo(D,F,G) =3 ciomp [1(B=b) - fs(B=b,D,F,G)

@ f7(F.G) =Y seqomp) f6(D=d,F,G) - P(F|D=d)
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Recap
Variable elimination example

Compute P(G|H = hy). Elimination order: A,C,E,H,I,B,D,F
® P(G,H=hi)=3p [7(F.G) fa(G) f5(G)
@ Eliminate F: P(G,H=h1) = fg(G) . f4(G) . f5(G)

® f1(B) =Y ucaom(a) P(A=a) - P(B|A=a)

i (
i ® f2(B, D, E) =Y capm(cy P(C=0)-P(D|B,C =c)- P(E|C =)
L/C °® fs(B ,D F,G):= Zcedom(E)fg(B D,E=e)- P(G|F,E=e)
D ® f1(G) = P(H=h|G)
VOB e f(@) = zledomm P(I=i|G)
F\ ® f6(D,F,G) =3 comp [1(B=b)- fs(B=b,D,F,G)
G o fx(F, ) Zdedm(D)fe(D d,F,G)- P(F|D=d)
EN e (O = S s FF=1.0)
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Recap
Variable elimination example

Compute

P(G|H = hy). Elimination order: A,C,E,H,I,B,D,F

® P(G,H=hi)=fs(G)- fa(G) - f5(G)
@ Normalize: P(G|H=h1) = P(G,H=hy)

™

T ~— O ~— 00 ~<—>>
\O

- ZgEdo n(G) P(G,H="hy)

@ fi(B):= Zaedcm(A) P(A=a) - P(B|A=a)

(
® f2(B,D,E) =3 ciomc) P(C=c)-P(D|B,C=c)-P(E|C=c)
° f3(B ,D F,G):= Zeedom ;) f2(B,D,E=e¢) - P(G|F,E=e¢)
@ fi(G) = P(H=Mm|G)
® f5(G) =X icaomn PU=1lG)
o fo(D,F,G) = caomm [1(B=b)- fs(B=b,D,F,G)
° f7(F7G) Zdedom(D) fe(D=d,F,G)- P(F|D=d)

(

® fs(G) =2 redomm f1(F =1, G)
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Recap

What good was Conditional Independence?

@ That's great. .. but it looks incredibly painful for large graphs.

@ And... why did we bother learning conditional independence?
Does it help us at all?
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Recap

What good was Conditional Independence?

@ That's great. .. but it looks incredibly painful for large graphs.

@ And... why did we bother learning conditional independence?
Does it help us at all?

e yes—we use the chain rule decomposition right at the
beginning
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Recap

What good was Conditional Independence?

@ That's great. .. but it looks incredibly painful for large graphs.

@ And... why did we bother learning conditional independence?
Does it help us at all?

e yes—we use the chain rule decomposition right at the
beginning

@ Can we use our knowledge of conditional independence to
make this calculation even simpler?
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Recap

What good was Conditional Independence?

@ That's great. .. but it looks incredibly painful for large graphs.
@ And... why did we bother learning conditional independence?
Does it help us at all?

e yes—we use the chain rule decomposition right at the
beginning

@ Can we use our knowledge of conditional independence to
make this calculation even simpler?
e yes—there are some variables that we don't have to sum out
e intuitively, they're the ones that are “pre-summed-out” in our
tables
e example: summing out I on the previous slide
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Recap

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate
all leaf nodes that are neither observed nor queried, until we reach
a fixed point.
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Recap

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate
all leaf nodes that are neither observed nor queried, until we reach
a fixed point.

@ Can we justify that on a three-

node graph—Fire, Alarm, and
Smoke—when we ask for:

@ @ o P(Fire)?
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Recap

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate
all leaf nodes that are neither observed nor queried, until we reach
a fixed point.

@ Can we justify that on a three-

node graph—Fire, Alarm, and
Smoke—when we ask for:

@ @ e P(Fire)?
e P(Fire | Alarm)?
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Hidden Markov Models

Lecture Overview

© Hidden Markov Models
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Hidden Markov Models

Markov chain

@ A Markov chain is a special sort of belief network:

@ Thus P(St—l-l’SO: ey St) = P(St+1’5t).

@ Often Sy represents the state at time t. Intuitively .S; conveys
all of the information about the history that can affect the
future states.

@ "The past is independent of the future given the present.”
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Hidden Markov Models

Stationary Markov chain

@ A stationary Markov chain is when for all t > 0, ¢/ > 0,
P(St11|5t) = P(Sy+1]Sy).
e We specify P(Sp) and P(S+1|S¢).
e Simple model, easy to specify
o Often the natural model
e The network can extend indefinitely
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Hidden Markov Models

Hidden Markov Model

e A Hidden Markov Model (HMM) starts with a Markov chain,
and adds a noisy observation about the state at each time
step:

e P(Sp) specifies initial conditions
@ P(S;+1|S:) specifies the dynamics
@ P(O¢|S;) specifies the sensor model
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Hidden Markov Models

Example: localization

@ Suppose a robot wants to determine its location based on its
actions and its sensor readings: Localization

@ This can be represented by the augmented HMM:
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Hidden Markov Models

Example localization domain

@ Circular corridor, with 16 locations:

1 2 3 4 5

0 6 7 8 09 2 13 14 15
@ Doors at positions: 2, 4, 7, 11.

@ Noisy Sensors

@ Stochastic Dynamics

@ Robot starts at an unknown location and must determine

where it is.
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Hidden Markov Models

Example Sensor Model

e P(Observe Door | At Door) = 0.8
e P(Observe Door | Not At Door) = 0.1
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Hidden Markov Models

Example Dynamics Model

P(loci+1 = L]action; = goRight Nloc; = L) = 0.1
P(loci+1 = L + 1|action, = goRight Nlocy = L) = 0.8
P(loci+1 = L + 2|actiony = goRight Alocy = L) = 0.074

P(loci11 = L'|action, = goRight Aloc, = L) = 0.002 for any
other location L'.

o All location arithmetic is modulo 16.
o The action goLeft works the same but to the left.
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Hidden Markov Models

Combining sensor information

@ Example: we can combine information from a light sensor and
the door sensor: “Sensor Fusion”

@ S;: robot location at time ¢

@ D;: door sensor value at time ¢

o L;: light sensor value at time ¢
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Hidden Markov Models

Localization demo

@ http://www.cs.ubc.ca/spider/poole/demos/
localization/localization.html
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