Reasoning Under Uncertainty: Variable Elimination Example

CPSC 322 - Uncertainty 7

Textbook $\S 10.5$

Lecture Overview

(1) Recap

(2) Variable Elimination

(3) Variable Elimination Example

Factors and Assigning Variables

- A factor is a representation of a function from a tuple of random variables into a number.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
- We can make new factors out of an existing factor
- Our first operation: assign some or all of the variables of a factor.
- $f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)$, where $v_{1} \in \operatorname{dom}\left(X_{1}\right)$, is a factor on X_{2}, \ldots, X_{j}.
- $f\left(X_{1}=v_{1}, X_{2}=v_{2}, \ldots, X_{j}=v_{j}\right)$ is a number that is the value of f when each X_{i} has value v_{i}.
- The former is also written as $f\left(X_{1}, X_{2}, \ldots, X_{j}\right)_{X_{1}=v_{1}, \ldots, X_{j}=v_{j}}$

Summing out variables

Our second operation: we can sum out a variable, say X_{1} with domain $\left\{v_{1}, \ldots, v_{k}\right\}$, from factor $f\left(X_{1}, \ldots, X_{j}\right)$, resulting in a factor on X_{2}, \ldots, X_{j} defined by:

$$
\begin{aligned}
& \left(\sum_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right) \\
& \quad=f\left(X_{1}=v_{1}, \ldots, X_{j}\right)+\cdots+f\left(X_{1}=v_{k}, \ldots, X_{j}\right)
\end{aligned}
$$

Multiplying factors

- Our third operation: factors can be multiplied together.
- The product of factor $f_{1}(\bar{X}, \bar{Y})$ and $f_{2}(\bar{Y}, \bar{Z})$, where \bar{Y} are the variables in common, is the factor $\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})$ defined by:

$$
\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})=f_{1}(\bar{X}, \bar{Y}) f_{2}(\bar{Y}, \bar{Z})
$$

Probability of a conjunction

- Suppose the variables of the belief network are X_{1}, \ldots, X_{n}.
- What we want to compute: the factor

$$
P\left(X_{q}, X_{o_{1}}=v_{1}, \ldots, X_{o_{j}}=v_{j}\right)
$$

- We can compute $P\left(X_{q}, X_{o_{1}}=v_{1}, \ldots, X_{o_{j}}=v_{j}\right)$ by summing out the variables

$$
X_{s_{1}}, \ldots, X_{s_{k}}=\left\{X_{1}, \ldots, X_{n}\right\} \backslash\left\{X_{q}, X_{o_{1}}, \ldots, X_{o_{j}}\right\} .
$$

- We sum out these variables one at a time
- the order in which we do this is called our elimination ordering.

$$
\begin{aligned}
& P\left(X_{q}, X_{o_{1}}=v_{1}, \ldots, X_{o_{j}}=v_{j}\right) \\
& \quad=\sum_{X_{s_{k}}} \cdots \sum_{X_{s_{1}}} P\left(X_{1}, \ldots, X_{n}\right)_{X_{o_{1}}=v_{1}, \ldots, X_{o_{j}}=v_{j}} .
\end{aligned}
$$

Probability of a conjunction

- What we know: the factors $P\left(X_{i} \mid p X_{i}\right)$.
- Using the chain rule and the definition of a belief network, we can write $P\left(X_{1}, \ldots, X_{n}\right)$ as $\prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)$. Thus:

$$
\begin{aligned}
P & \left(X_{q}, X_{o_{1}}=v_{1}, \ldots, X_{o_{j}}=v_{j}\right) \\
& =\sum_{X_{s_{k}}} \cdots \sum_{X_{s_{1}}} P\left(X_{1}, \ldots, X_{n}\right)_{X_{o_{1}}}=v_{1}, \ldots, X_{o_{j}}=v_{j} \\
& =\sum_{X_{s_{k}}} \cdots \sum_{X_{s_{1}}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)_{X_{o_{1}}=v_{1}, \ldots, X_{o_{j}}=v_{j}}
\end{aligned}
$$

Lecture Overview

(1) Recap
(2) Variable Elimination
(3) Variable Elimination Example

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression $a b+a c+a d+a e h+a f h+a g h$. How can this expression be evaluated more efficiently?

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression $a b+a c+a d+a e h+a f h+a g h$. How can this expression be evaluated more efficiently?
- factor out the a and then the h giving

$$
a(b+c+d+h(e+f+g))
$$

- this takes only 7 multiplications or additions

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression $a b+a c+a d+a e h+a f h+a g h$. How can this expression be evaluated more efficiently?
- factor out the a and then the h giving

$$
a(b+c+d+h(e+f+g))
$$

- this takes only 7 multiplications or additions
- How can we compute $\sum_{X_{s_{1}}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)$ efficiently?

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression $a b+a c+a d+a e h+a f h+a g h$. How can this expression be evaluated more efficiently?
- factor out the a and then the h giving

$$
a(b+c+d+h(e+f+g))
$$

- this takes only 7 multiplications or additions
- How can we compute $\sum_{X_{s_{1}}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)$ efficiently?
- Factor out those terms that don't involve $X_{s_{1}}$:
$\left(\prod_{\substack{i \mid X_{s_{1}} \notin\left\{X_{i}\right\} \cup p X_{i} \\ \text { (terms that do not involve } X_{s_{i}} \text {) }}} P\left(X_{i} \mid p X_{i}\right)\right)\left(\sum_{\substack{X_{s_{1}}}} \prod_{\substack{i \mid X_{s_{1}} \in\left\{X_{i}\right\} \cup p X_{i} \\ \text { (terms that involve } X_{s_{i}} \text {) }}} P\left(X_{i} \mid p X_{i}\right)\right)$

Summing out a variable efficiently

To sum out a variable $X_{s_{j}}$ from a product f_{1}, \ldots, f_{k} of factors:

- Partition the factors into
- those that don't contain $X_{s_{j}}$, say f_{1}, \ldots, f_{i},
- those that contain $X_{s_{j}}$, say f_{i+1}, \ldots, f_{k}

We know:

$$
\sum_{X_{s_{j}}} f_{1} \times \cdots \times f_{k}=\left(f_{1} \times \cdots \times f_{i}\right)\left(\sum_{X_{s_{j}}} f_{i+1} \times \cdots \times f_{k}\right) .
$$

- $\left(\sum_{X_{s_{j}}} f_{i+1} \times \cdots \times f_{k}\right)$ is a new factor; let's call it f^{\prime}.
- Now we have $\sum_{X_{s_{j}}} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f^{\prime}$.
- Store f^{\prime} explicitly, and discard f_{i+1}, \ldots, f_{k}.
- Now we've summed out $X_{s_{j}}$.

Variable elimination algorithm

To compute $P\left(X_{q} \mid X_{o_{1}}=v_{1} \wedge \ldots \wedge X_{o_{j}}=v_{j}\right)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- For each of the other variables $X_{s_{i}} \in\left\{X_{s_{1}}, \ldots, X_{s_{k}}\right\}$, sum out $X_{s_{i}}$
- Multiply the remaining factors.
- Normalize by dividing the resulting factor $f\left(X_{q}\right)$ by $\sum_{X_{q}} f\left(X_{q}\right)$.

Lecture Overview

(1) Recap
 (2) Variable Elimination
 (3) Variable Elimination Example

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A, B, C, D, E, F, G, H, I)$
- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(D \mid B, C)$.
$P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(D \mid B, C)$. $P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate $A: P(G, H)=\sum_{B, C, D, E, F, I} f_{1}(B) \cdot P(C) \cdot P(D \mid B, C)$. $P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{B, C, D, E, F, I} f_{1}(B) \cdot P(C) \cdot P(D \mid B, C) \cdot P(E \mid C) \cdot P(F \mid D)$. $P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate $C: P(G, H)=$

$$
\sum_{B, D, E, F, I} f_{1}(B) \cdot f_{2}(B, D, E) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=$
$\sum_{B, D, E, F, I} f_{1}(B) \cdot f_{2}(B, D, E) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate E :

$$
P(G, H)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot P(H \mid G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot P(H \mid G) \cdot P(I \mid G)$
- Observe $H=h_{1}$:

$$
P\left(G, H=h_{1}\right)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot P(I \mid G)$
- Eliminate I :

$$
P\left(G, H=h_{1}\right)=\sum_{B, D, F} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{B, D, F} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate B :

$$
P\left(G, H=h_{1}\right)=\sum_{D, F} f_{6}(D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{D, F} f_{6}(D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate $D: P\left(G, H=h_{1}\right)=\sum_{F} f_{7}(F, G) \cdot f_{4}(G) \cdot f_{5}(G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{F} f_{7}(F, G) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate $F: P\left(G, H=h_{1}\right)=f_{8}(G) \cdot f_{4}(G) \cdot f_{5}(G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$
- $f_{8}(G):=\sum_{f \in \operatorname{dom}(F)} f_{7}(F=f, G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=f_{8}(G) \cdot f_{4}(G) \cdot f_{5}(G)$
- Normalize: $P\left(G \mid H=h_{1}\right)=\frac{P\left(G, H=h_{1}\right)}{\sum_{g \in \operatorname{dom}(G)} P\left(G, H=h_{1}\right)}$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$
- $f_{8}(G):=\sum_{f \in \operatorname{dom}(F)} f_{7}(F=f, G)$

What good was Conditional Independence?

- That's great. . . but it looks incredibly painful for large graphs.
- And... why did we bother learning conditional independence? Does it help us at all?

What good was Conditional Independence?

- That's great. . . but it looks incredibly painful for large graphs.
- And. . . why did we bother learning conditional independence? Does it help us at all?
- yes-we use the chain rule decomposition right at the beginning

What good was Conditional Independence?

- That's great. . . but it looks incredibly painful for large graphs.
- And. . . why did we bother learning conditional independence? Does it help us at all?
- yes-we use the chain rule decomposition right at the beginning
- Can we use our knowledge of conditional independence to make this calculation even simpler?

What good was Conditional Independence?

- That's great. . . but it looks incredibly painful for large graphs.
- And. . . why did we bother learning conditional independence? Does it help us at all?
- yes-we use the chain rule decomposition right at the beginning
- Can we use our knowledge of conditional independence to make this calculation even simpler?
- yes-there are some variables that we don't have to sum out
- intuitively, they're the ones that are "pre-summed-out" in our tables
- example: summing out I on the previous slide

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.

Can we justify that on a threenode graph-Fire, Alarm, and Smoke-when we ask for:

- $P($ Fire $)$?

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.

Can we justify that on a threenode graph-Fire, Alarm, and Smoke-when we ask for:

- P(Fire)?
- $P($ Fire \mid Alarm $)$?

