Reasoning Under Uncertainty: Belief Networks

CPSC 322 - Uncertainty 4

Textbook §6.3

Reasoning Under Uncertainty: Belief Networks

CPSC 322 - Uncertainty 4, Slide 1

< 注→ < 注→

Lecture Overview

2 Belief Networks

Reasoning Under Uncertainty: Belief Networks

æ

(신문) (신문)

Image: A matrix

Marginal independence

Definition (marginal independence)

Random variable X is marginally independent of random variable Y if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$,

$$P(X = x_i | Y = y_j)$$

= $P(X = x_i | Y = y_k)$
= $P(X = x_i).$

That is, knowledge of Y's value doesn't affect your belief in the value of X.

• E • • E • · ·

Conditional Independence

• Sometimes, two random variables might not be marginally independent. However, they can *become* independent after we observe some third variable.

Definition

Random variable X is conditionally independent of random variable Y given random variable Z if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$, $y_k \in dom(Y)$ and $z_m \in dom(Z)$,

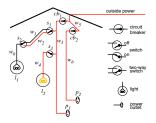
$$P(X = x_i | Y = y_j \land Z = z_m)$$

= $P(X = x_i | Y = y_k \land Z = z_m)$
= $P(X = x_i | Z = z_m).$

• That is, knowledge of Y's value doesn't affect your belief in the value of X, given a value of Z.

Reasoning Under Uncertainty: Belief Networks

More examples of conditional independence



- Whether light l1 is lit is independent of the position of light switch s2 given whether there is power in wire w_0 .
 - two random variables that are not marginally independent can still be conditionally independent
- Every other variable may be independent of whether light l1 is lit given whether there is power in wire w_0 and the status of light l1 (if it's ok, or if not, how it's broken).

More examples of conditional independence

- The probability that the Canucks will win the Stanley Cup is independent of whether light l1 is lit given whether there is outside power.
 - sometimes, when two random variables are marginally independent, they're also conditionally independent given a third variable.
- But not always...
 - Let C_1 be the proposition that coin 1 is heads; let C_2 be the proposition that coin 2 is heads; let B be the proposition that coin 1 and coin 2 are both either heads or tails.
 - $P(C_1|C_2) = P(C_1)$: C_1 and C_2 are marginally independent.
 - But $P(C_1|C_2, B) \neq P(C_1|B)$: if I know both C_2 and B, I know C_1 exactly, but if I only know B I know nothing.
 - Hence C_1 and C_2 are *not* conditionally independent given B.

(1日) (日) (日)

Lecture Overview

Reasoning Under Uncertainty: Belief Networks

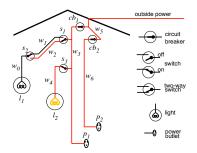
æ

(신문) (신문)

Image: A matrix

Idea of belief networks

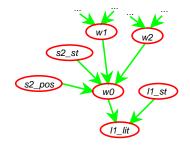
Whether l1 is lit $(L1_lit)$ depends only on the status of the light $(L1_st)$ and whether there is power in wire w0. Thus, $L1_lit$ is independent of the other variables given $L1_st$ and W0. In a belief network, W0 and $L1_st$ are parents of $L1_lit$.



Similarly, W0 depends only on whether there is power in w1, whether there is power in w2, the position of switch s2 ($S2_pos$), and the status of switch s2 ($S2_st$).

Idea of belief networks

Whether l1 is lit $(L1_lit)$ depends only on the status of the light $(L1_st)$ and whether there is power in wire w0. Thus, $L1_lit$ is independent of the other variables given $L1_st$ and W0. In a belief network, W0 and $L1_st$ are parents of $L1_lit$.



Similarly, W0 depends only on whether there is power in w1, whether there is power in w2, the position of switch s2 ($S2_pos$), and the status of switch s2 ($S2_st$).

(3)

Components of a belief network

Definition (belief network)

A belief network consists of:

- a directed acyclic graph with nodes labeled with random variables
- a domain for each random variable
- a set of conditional probability tables for each variable given its parents (which includes prior probabilities for nodes with no parents).

• E • • E •

Constructing a belief network

Given a set of random variables, a belief network can be constructed as follows:

- Totally order the variables of interest: X_1, \ldots, X_n
- Theorem of probability theory (chain rule): $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i | X_1, \ldots, X_{i-1})$
- The parents pX_i of X_i are those predecessors of X_i that render X_i independent of the other predecessors. That is, $pX_i \subseteq X_1, \ldots, X_{i-1}$ and $P(X_i|pX_i) = P(X_i|X_1, \ldots, X_{i-1})$

• So
$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | pX_i)$$

イロト イポト イヨト イヨト 二日

Lecture Overview

2 Belief Networks

Reasoning Under Uncertainty: Belief Networks

CPSC 322 - Uncertainty 4, Slide 11

æ

イロン イヨン イヨン イヨン

Suppose you want to diagnose whether there is a fire in a building

- you receive a noisy report about whether everyone is leaving the building.
- if everyone *is* leaving, this may have been caused by a fire alarm.
- if there is a fire alarm, it may have been caused by a fire or by tampering
- if there is a fire, there may be smoke

(E) < E)</p>

First you choose the variables. In this case, all are boolean:

- Tampering is true when the alarm has been tampered with
- Fire is true when there is a fire
- Alarm is true when there is an alarm
- Smoke is true when there is smoke
- Leaving is true if there are lots of people leaving the building
- Report is true if the sensor reports that people are leaving the building

- Next, you order the variables: *Fire*; *Tampering*; *Alarm*; *Smoke*; *Leaving*; *Report*.
- Now evaluate which variables are conditionally independent given their parents:
 - *Fire* is independent of *Tampering* (learning that one is true would not change your beliefs about the probability of the other)
 - Alarm depends on both *Fire* and *Tampering*: it could be caused by either or both.
 - Smoke is caused by Fire, and so is independent of Tampering and Alarm given whether there is a Fire
 - *Leaving* is caused by *Alarm*, and thus is independent of the other variables given *Alarm*.
 - *Report* is caused by *Leaving*, and thus is independent of the other variables given *Leaving*.

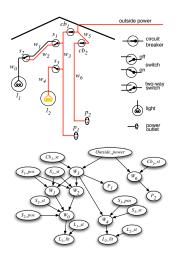
イロン イ部ン イヨン イヨン 三日

This corresponds to the following belief network:

Of course, we're not done until we also come up with conditional probability tables for each node in the graph.

Reasoning Under Uncertainty: Belief Networks

Example: Circuit Diagnosis



The belief network also specifies:

- The domain of the variables: $W_0, \ldots, W_6 \in \{live, dead\}$ $S_{1-pos}, S_{2-pos}, \text{ and } S_{3-pos} \text{ have}$ domain $\{up, down\}$ S_{1-st} has $\{ok, upside_down, short,$ $intermittent, broken\}.$
- Conditional probabilities, including: $P(W_1 = live|s_1 pos = up \land S_1 st = ok \land W_3 = live)$ $P(W_1 = live|s_1 pos = up \land S_1 st = ok \land W_3 = dead)$ $P(S_1 pos = up)$ $P(S_1 st = upside down)$

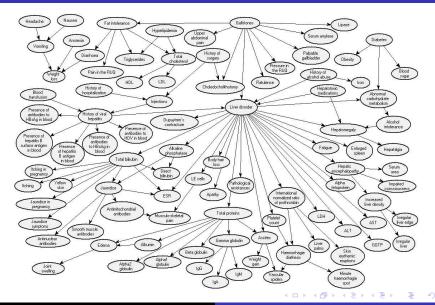
Example: Circuit Diagnosis

The power network can be used in a number of ways:

- Conditioning on the status of the switches and circuit breakers, whether there is outside power and the position of the switches, you can simulate the lighting.
- Given values for the switches, the outside power, and whether the lights are lit, you can determine the posterior probability that each switch or circuit breaker is *ok* or not.
- Given some switch positions and some outputs and some intermediate values, you can determine the probability of any other variable in the network.

Example: Liver Diagnosis

Source: Onisko et al., 1999



CPSC 322 - Uncertainty 4, Slide 18

Belief network summary

- A belief network is a directed acyclic graph (DAG) where nodes are random variables.
 - A belief network is automatically acyclic by construction.
- The parents of a node *n* are those variables on which *n* directly depends.
- A belief network is a graphical representation of dependence and independence:
 - A variable is conditionally independent of its non-descendants given its parents.