Reasoning Under Uncertainty: Marginal and Conditional Independence

CPSC 322 – Uncertainty 3

Textbook §6.2

Lecture Overview

Recap

- 2 Marginal Independence
- Conditional Independence

Conditioning

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model taking all background information into account. This gives the prior probability.
- All other information must be conditioned on.
- If evidence e is all of the information obtained subsequently, the conditional probability P(h|e) of h given e is the posterior probability of h.

Conditional Probability

The conditional probability of formula h given evidence e is

$$P(h|e) = \frac{P(h \land e)}{P(e)}$$

Chain rule:

$$P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) = \prod_{i=1}^n P(f_i|f_1 \wedge \cdots \wedge f_{i-1})$$

Bayes' theorem:

$$P(h|e) = \frac{P(e|h) \times P(h)}{P(e)}.$$

Lecture Overview

Recap

- 2 Marginal Independence
- Conditional Independence

Marginal independence

Definition (marginal independence)

Random variable X is marginally independent of random variable Y if, for all $x_i \in dom(X)$, $y_i \in dom(Y)$ and $y_k \in dom(Y)$,

$$P(X = x_i | Y = y_j)$$

$$= P(X = x_i | Y = y_k)$$

$$= P(X = x_i).$$

That is, knowledge of Y's value doesn't affect your belief in the value of X.

Examples of marginal independence

- The probability that the Canucks will win the Stanley Cup is independent of whether light l1 is lit.
 - remember the diagnostic assistant domain—the picture will recur in a minute!
- Whether there is someone in a room is independent of whether a light l2 is lit.
- Whether light l1 is lit is not independent of the position of switch s2.

Lecture Overview

1 Recap

- 2 Marginal Independence
- 3 Conditional Independence

Conditional Independence

 Sometimes, two random variables might not be marginally independent. However, they can become independent after we observe some third variable.

Definition

Random variable X is conditionally independent of random variable Y given random variable Z if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$, $y_k \in dom(Y)$ and $z_m \in dom(Z)$,

$$P(X = x_i | Y = \mathbf{y_j} \land Z = z_m)$$

$$= P(X = x_i | Y = \mathbf{y_k} \land Z = z_m)$$

$$= P(X = x_i | Z = z_m).$$

• That is, knowledge of Y's value doesn't affect your belief in the value of X, given a value of Z.

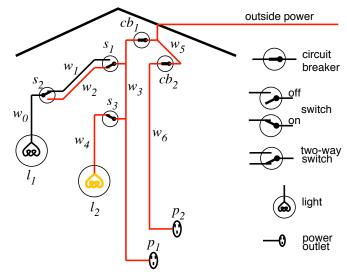
- Kevin separately phones two students, Alice and Bob.
- To each, he tells the same number, $n_k \in \{1, \dots, 10\}$.
- Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
- ullet Let the numbers Alice and Bob think they heard be n_a and n_b respectively.
- Are n_a and n_b marginally independent?

- Kevin separately phones two students, Alice and Bob.
- To each, he tells the same number, $n_k \in \{1, \dots, 10\}$.
- Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
- \bullet Let the numbers Alice and Bob think they heard be n_a and n_b respectively.
- Are n_a and n_b marginally independent?
 - No: we'd expect (e.g.) $P(n_a = 1 | n_b = 1) > P(n_a = 1)$.

- Kevin separately phones two students, Alice and Bob.
- To each, he tells the same number, $n_k \in \{1, \dots, 10\}$.
- Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
- ullet Let the numbers Alice and Bob think they heard be n_a and n_b respectively.
- Are n_a and n_b marginally independent?
 - No: we'd expect (e.g.) $P(n_a = 1 | n_b = 1) > P(n_a = 1)$.
- Why are n_a and n_b conditionally independent given n_k ?

- Kevin separately phones two students, Alice and Bob.
- To each, he tells the same number, $n_k \in \{1, \dots, 10\}$.
- Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
- ullet Let the numbers Alice and Bob think they heard be n_a and n_b respectively.
- Are n_a and n_b marginally independent?
 - No: we'd expect (e.g.) $P(n_a = 1 | n_b = 1) > P(n_a = 1)$.
- Why are n_a and n_b conditionally independent given n_k ?
 - Because if we know the number that Kevin actually said, the two variables are no longer correlated.
 - e.g., $P(n_a = 1 | n_b = 1, n_k = 2) = P(n_a = 1 | n_k = 2)$

Example domain (diagnostic assistant)



More examples of conditional independence

- Whether light l1 is lit is independent of the position of light switch s2 given whether there is power in wire w_0 .
 - two random variables that are not marginally independent can still be conditionally independent
- Every other variable may be independent of whether light l1 is lit given whether there is power in wire w_0 and the status of light l1 (if it's ok, or if not, how it's broken).

More examples of conditional independence

- The probability that the Canucks will win the Stanley Cup is independent of whether light l1 is lit given whether there is outside power.
 - sometimes, when two random variables are marginally independent, they're also conditionally independent given a third variable.
- But not always...
 - Let C₁ be the proposition that coin 1 is heads; let C₂ be the proposition that coin 2 is heads; let B be the proposition that coin 1 and coin 2 are both either heads or tails.
 - $P(C_1|C_2) = P(C_1)$: C_1 and C_2 are marginally independent.
 - But $P(C_1|C_2,B) \neq P(C_1|B)$: if I know both C_2 and B, I know C_1 exactly, but if I only know B I know nothing.
 - Hence C_1 and C_2 are *not* conditionally independent given B.

