Reasoning Under Uncertainty: Variable Elimination

CPSC 322 - Uncertainty 6

Textbook §6.4

Reasoning Under Uncertainty: Variable Elimination

Lecture Overview

2 Factors

3 Variable Elimination

Reasoning Under Uncertainty: Variable Elimination

æ

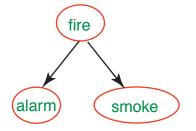
イロン イヨン イヨン イヨン

Chain

- *alarm* and *report* are independent: false.
- *alarm* and *report* are independent given *leaving*: true.
- Intuitively, the only way that the *alarm* affects *report* is by affecting leaving.

æ

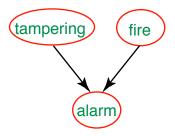
Common ancestors



- alarm and smoke are independent: false.
- alarm and smoke are independent given *fire*: true.
- Intuitively, *fire* can explain alarm and smoke; learning one can affect the other by changing your belief in fire.

< ≣⇒

Common descendants



- *tampering* and *fire* are independent: true.
- tampering and fire are independent given alarm: false.
- Intuitively, *tampering* can explain away *fire*

Belief Network Inference

- Our goal: compute probabilities of variables in a belief network
- Two cases:
 - **(**) the unconditional (prior) distribution over one or more variables
 - the posterior distribution over one or more variables, conditioned on one or more observed variables
- To address both cases, we only need a computational solution to case 1
- Our method: exploiting the structure of the network to efficiently eliminate (sum out) the non-observed, non-query variables one at a time.

• = • • = •

Lecture Overview

3 Variable Elimination

Reasoning Under Uncertainty: Variable Elimination

CPSC 322 - Uncertainty 6, Slide 7

æ

イロン イヨン イヨン イヨン

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context

• e.g.,
$$P(X_1, X_2)$$
 is a factor $f(X_1, X_2)$

- e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor $f(X_1, X_2)$
- e.g., $P(X_1, X_3 = v_3 | X_2)$ is a factor $f(X_1, X_2)$

Manipulating Factors

- We can make new factors out of an existing factor
- Our first operation: we can assign some or all of the variables of a factor.
 - $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in dom(X_1)$, is a factor on X_2, \dots, X_j .
 - $f(X_1 = v_1, X_2 = v_2, \dots, X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .
- The former is also written as $f(X_1, X_2, \dots, X_j)_{X_1 = v_1, \dots, X_j = v_j}$

▲□ → ▲ □ → ▲ □ → □ □

Example factors

						Y	Z	val
	X	Y	Z	val		t	t	0.1
	t	t	t	0.1	r(X=t,Y,Z):	t	f	0.9
	t	t	f	0.9	x	f	t	0.2
	t	f	t	0.2		f	f	0.8
r(X, Y, Z):	t	f	f	0.8				
	f	t	t	0.4				
	f	t	f	0.6			Y	val
	f	f	t	0.3	r(X=t, Y, Z=t)	=f):	t	0.9
	f	f	f	0.7			f	0.8
· · · · · · · · · · · · · · · · · · ·					r(X=t, Y=	f, Z	=f)	= 0.8

æ

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Summing out variables

Our second operation: we can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j) = f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$$

3

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Summing out a variable example

	A	B	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
f_3 :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	A	C	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
	f	t	0.54
	f	f	0.46

Reasoning Under Uncertainty: Variable Elimination

Multiplying factors

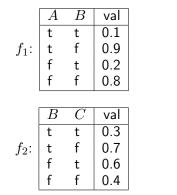
- Our third operation: factors can be multiplied together.
- The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

 Note: it's defined on all X, Y, Z triples, obtained by multiplying together the appropriate pair of entries from f₁ and f₂.

Variable Elimination

Multiplying factors example



	A	B	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 \times f_2$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

æ

< ≣ >

Lecture Overview

2 Factors

3 Variable Elimination

Reasoning Under Uncertainty: Variable Elimination

CPSC 322 - Uncertainty 6, Slide 15

æ

・ロン ・回 と ・ ヨ と ・ ヨ と

Probability of a conjunction

- Suppose the variables of the belief network are X_1, \ldots, X_n .
- What we want to compute: the factor $P(X_q, X_{o_1} = v_1, \dots, X_{o_j} = v_j)$
- We can compute $P(X_q, X_{o_1} = v_1, \ldots, X_{o_j} = v_j)$ by summing out the variables
 - $X_{s_1}, \ldots, X_{s_k} = \{X_1, \ldots, X_n\} \setminus \{X_q, X_{o_1}, \ldots, X_{o_j}\}.$
- We sum out these variables one at a time
 - the order in which we do this is called our elimination ordering.

$$P(X_q, X_{o_1} = v_1, \dots, X_{o_j} = v_j) = \sum_{X_{s_k}} \cdots \sum_{X_{s_1}} P(X_1, \dots, X_n)_{X_{o_1} = v_1, \dots, X_{o_j} = v_j}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Probability of a conjunction

- What we know: the factors $P(X_i|pX_i)$.
- Using the chain rule and the definition of a belief network, we can write $P(X_1, \ldots, X_n)$ as $\prod_{i=1}^n P(X_i | pX_i)$. Thus:

$$P(X_q, X_{o_1} = v_1, \dots, X_{o_j} = v_j)$$

$$= \sum_{X_{s_k}} \cdots \sum_{X_{s_1}} P(X_1, \dots, X_n)_{X_{o_1} = v_1, \dots, X_{o_j} = v_j}$$

$$= \sum_{X_{s_k}} \cdots \sum_{X_{s_1}} \prod_{i=1}^n P(X_i | pX_i)_{X_{o_1} = v_1, \dots, X_{o_j} = v_j}.$$

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

• It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently?

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently?
 - factor out the a and then the h giving a(b+c+d+h(e+f+g))
 - this takes only 7 multiplications or additions

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently?
 - factor out the a and then the h giving a(b+c+d+h(e+f+g))
 - this takes only 7 multiplications or additions
- How can we compute $\sum_{X_{s_1}} \prod_{i=1}^n P(X_i | pX_i)$ efficiently?

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently?
 - factor out the a and then the h giving a(b+c+d+h(e+f+g))
 - this takes only 7 multiplications or additions
- How can we compute $\sum_{X_{s_1}} \prod_{i=1}^n P(X_i | pX_i)$ efficiently?
- Factor out those terms that don't involve X_{s_1} :

$$\left(\prod_{\substack{i|X_{s_1}\notin\{X_i\}\cup pX_i\\(\text{terms that do not involve } X_{s_i})} P(X_i|pX_i)\right)\left(\sum_{X_{s_1}}\prod_{\substack{i|X_{s_1}\in\{X_i\}\cup pX_i\\(\text{terms that involve } X_{s_i})}}\prod_{\substack{P(X_i|pX_i)\\(\text{terms that involve } X_{s_i})}}P(X_i|pX_i)\right)$$

Reasoning Under Uncertainty: Variable Elimination

(同) (注) (注) 二日