Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 - Uncertainty 5

Textbook §10.4

Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 - Uncertainty 5, Slide 1

< 토 ► < 토 ►

Lecture Overview

- 2 Belief Network Examples
- Observing Variables
- 4 Belief Network Inference

æ

★ E > < E >

A.

Components of a belief network

Definition (belief network)

A belief network consists of:

- a directed acyclic graph with nodes labeled with random variables
- a domain for each random variable
- a set of conditional probability tables for each variable given its parents (including prior probabilities for nodes with no parents).

(3)

Relating BNs to the joint

If you have a belief network, you can recover the joint.

- Totally order the variables of interest: X_1, \ldots, X_n
- Claim: $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i | pX_i).$
 - For each i, $P(X_i|pX_i) = P(X_i|X_1, \dots, X_{i-1})$
 - The parents pX_i of X_i are those predecessors of X_i that render X_i independent of the other predecessors.
 - That is, $pX_i \subseteq X_1, \ldots, X_{i-1}$ and
 - 2 Theorem of probability theory (chain rule): $P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | X_1, \dots, X_{i-1})$

- イボト イヨト - ヨ

Lecture Overview

- 2 Belief Network Examples
- 3 Observing Variables
- 4 Belief Network Inference

æ

< 注→ < 注→

Suppose you want to diagnose whether there is a fire in a building

- you receive a noisy report about whether everyone is leaving the building.
- if everyone *is* leaving, this may have been caused by a fire alarm.
- if there is a fire alarm, it may have been caused by a fire or by tampering
- if there is a fire, there may be smoke

(3)

First you choose the variables. In this case, all are boolean:

- Tampering is true when the alarm has been tampered with
- Fire is true when there is a fire
- Alarm is true when there is an alarm
- Smoke is true when there is smoke
- Leaving is true if there are lots of people leaving the building
- Report is true if the sensor reports that people are leaving the building

- Next, you order the variables: *Fire*; *Tampering*; *Alarm*; *Smoke*; *Leaving*; *Report*.
- Now evaluate which variables are conditionally independent given their parents:
 - *Fire* is independent of *Tampering* (learning that one is true would not change your beliefs about the probability of the other)
 - Alarm depends on both *Fire* and *Tampering*: it could be caused by either or both.
 - Smoke is caused by Fire, and so is independent of Tampering and Alarm given whether there is a Fire
 - *Leaving* is caused by *Alarm*, and thus is independent of the other variables given *Alarm*.
 - *Report* is caused by *Leaving*, and thus is independent of the other variables given *Leaving*.

2

イロト イヨト イヨト イヨト

This corresponds to the following belief network:

Of course, we're not done until we also come up with conditional probability tables for each node in the graph.

Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 - Uncertainty 5, Slide 9

Example: Circuit Diagnosis

The belief network also specifies:

- The domain of the variables: $W_0, \ldots, W_6 \in \{live, dead\}$ $S_{1-pos}, S_{2-pos}, \text{ and } S_{3-pos} \text{ have}$ domain $\{up, down\}$ S_{1-st} has $\{ok, upside_down, short,$ $intermittent, broken\}.$
- Conditional probabilities, including: $P(W_1 = live|s_1 pos = up \land S_1 st = ok \land W_3 = live)$ $P(W_1 = live|s_1 pos = up \land S_1 st = ok \land W_3 = dead)$ $P(S_1 pos = up)$ $P(S_1 st = upside down)$

Example: Circuit Diagnosis

The power network can be used in a number of ways:

- Conditioning on the status of the switches and circuit breakers, whether there is outside power and the position of the switches, you can simulate the lighting.
- Given values for the switches, the outside power, and whether the lights are lit, you can determine the posterior probability that each switch or circuit breaker is *ok* or not.
- Given some switch positions and some outputs and some intermediate values, you can determine the probability of any other variable in the network.

Example: Liver Diagnosis

Source: Onisko et al., 1999

Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 - Uncertainty 5, Slide 12

Belief network summary

- A belief network is a directed acyclic graph (DAG) where nodes are random variables.
 - A belief network is automatically acyclic by construction.
- The parents of a node *n* are those variables on which *n* directly depends.
- A belief network is a graphical representation of dependence and independence:
 - A variable is conditionally independent of its non-descendants given its parents.

Lecture Overview

Recap

- 2 Belief Network Examples
- Observing Variables
- 4 Belief Network Inference

5 Factors

æ

★ E > < E >

• *alarm* and *report* are independent:

æ

(本語) (本語)

• *alarm* and *report* are independent: false.

æ

★ E → < E →</p>

- *alarm* and *report* are independent: false.
- *alarm* and *report* are independent given *leaving*:

æ

< ≣⇒

Chain

- *alarm* and *report* are independent: false.
- alarm and report are independent given leaving: true.
- Intuitively, the only way that the *alarm* affects *report* is by affecting *leaving*.

• *alarm* and *smoke* are independent:

æ

(本語)) (本語))

• *alarm* and *smoke* are independent: false.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

< 注→ < 注→

Common ancestors

• alarm and smoke are independent given *fire*:

æ

< ≣ >

Common ancestors

- *alarm* and *smoke* are independent: false.
- *alarm* and *smoke* are independent given *fire*: true.
- Intuitively, *fire* can explain *alarm* and *smoke*; learning one can affect the other by changing your belief in *fire*.

▲ 문 ▶ | ▲ 문 ▶

• *tampering* and *fire* are independent:

Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 - Uncertainty 5, Slide 17

< 注→ < 注→

• *tampering* and *fire* are independent: true.

Reasoning Under Uncertainty: Belief Network Inference

< ≣ > CPSC 322 - Uncertainty 5, Slide 17

< ≣ >

- *tampering* and *fire* are independent: true.
- *tampering* and *fire* are independent given alarm:

Reasoning Under Uncertainty: Belief Network Inference

- < ∃ > CPSC 322 - Uncertainty 5, Slide 17

< ∃ >

- *tampering* and *fire* are independent: true.
- *tampering* and *fire* are independent given alarm: false.
- Intuitively, tampering can explain away fire

< ∃ >

Lecture Overview

Recap

- 2 Belief Network Examples
- 3 Observing Variables
- 4 Belief Network Inference

5 Factors

æ

★ E > < E >

Belief Network Inference

- Our goal: compute probabilities of variables in a belief network
- Two cases:
 - **(**) the unconditional (prior) distribution over one or more variables
 - e the posterior distribution over one or more variables, conditioned on one or more observed variables

 If we want to compute the posterior probability of Z given evidence Y₁ = v₁ ∧ ... ∧ Yj = vj:

$$P(Z|Y_1 = v_1, \dots, Y_j = v_j) \\ = \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{P(Y_1 = v_1, \dots, Y_j = v_j)} \\ = \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{\sum_Z P(Z, Y_1 = v_1, \dots, Y_j = v_j)}$$

• So the computation reduces to the probability of $P(Z, Y_1 = v_1, \dots, Y_j = v_j).$

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Belief Network Inference

- Our goal: compute probabilities of variables in a belief network
- Two cases:
 - **(**) the unconditional (prior) distribution over one or more variables
 - e the posterior distribution over one or more variables, conditioned on one or more observed variables
- To address both cases, we only need a computational solution to case 1
- Our method: exploiting the structure of the network to efficiently eliminate (sum out) the non-observed, non-query variables one at a time.

Lecture Overview

Recap

- 2 Belief Network Examples
- Observing Variables
- 4 Belief Network Inference

æ

- ● ● - ● ● ●

< A

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context

• e.g.,
$$P(X_1, X_2)$$
 is a factor $f(X_1, X_2)$

- e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor $f(X_1, X_2)$
- e.g., $P(X_1, X_3 = v_3 | X_2)$ is a factor $f(X_1, X_2)$

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Manipulating Factors

- We can make new factors out of an existing factor
- Our first operation: we can assign some or all of the variables of a factor.
 - $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in dom(X_1)$, is a factor on X_2, \dots, X_j .
 - $f(X_1 = v_1, X_2 = v_2, \dots, X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .
- The former is also written as $f(X_1, X_2, \dots, X_j)_{X_1 = v_1, \dots, X_j = v_j}$

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Example factors

						Y	Z	val
	X	Y	Z	val		t	t	0.1
	t	t	t	0.1	r(X=t, Y, Z):	t	f	0.9
	t	t	f	0.9		f	t	0.2
	t	f	t	0.2		f	f	0.8
r(X, Y, Z):	t	f	f	0.8				
	f	t	t	0.4				
	f	t	f	0.6			Y	val
	f	f	t	0.3	r(X=t, Y, Z=t)	=f):	t	0.9
	f	f	f	0.7			f	0.8
l					r(X=t, Y=	f, Z	=f)	= 0.8

æ

Summing out variables

Our second operation: we can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j) = f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$$

・回 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Summing out a variable example

	A	B	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
f_3 :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	A	C	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
	f	t	0.54
	f	f	0.46

イロト イヨト イヨト イヨト

- Our third operation: factors can be multiplied together.
- The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

 Note: it's defined on all X, Y, Z triples, obtained by multiplying together the appropriate pair of entries from f₁ and f₂.

A 3 1 A 3 A

 \overline{B} \overline{C}

t

f

t

f

Factors

Multiplying factors example

æ

< ≣ >

val

0.03

0.07 0.54 0.36

0.06

0.14 0.48

0.32