Searching: Intro

CPSC 322 - Search 1

Textbook §3.0 – 3.3

Searching: Intro

CPSC 322 - Search 1, Slide 1

Lecture Overview

2 Example Problems

æ

▲ □ → ▲ □ → ▲ □ →

Agents and Representations

- Recall that an agent is something that acts in an environment
- The agent also receives observations about the environment
 - this could be observations from sensors such as cameras, laser rangefinders, etc.
 - can also include "observations" of the agent's own past actions
- In a deterministic environment, the agent can perfectly predict the outcome of an action
 - doesn't need sensors: just needs to remember its own past actions

The Table-Lookup Agent

- An agent can be thought of as a mapping from observations to the new action that the agent will take
- How should agents be constructed? One choice:
 - agent takes in the sequence of observations
 - agent looks up the correct action for this sequence of observations based on an internal representation (e.g., a table)
- Such an agent could indeed behave rationally. What's the problem?

The Table-Lookup Agent

- An agent can be thought of as a mapping from observations to the new action that the agent will take
- How should agents be constructed? One choice:
 - agent takes in the sequence of observations
 - agent looks up the correct action for this sequence of observations based on an internal representation (e.g., a table)
- Such an agent could indeed behave rationally. What's the problem?
 - too many sequences of observations are possible!
 - e.g., 10 possible observations, 10 timesteps $\rightarrow 10^{10}$ different entries in the table
 - compare this to e.g., the number of different move sequences that are possible in chess

・ 「「・ ・ 」 ・ ・ 」 正

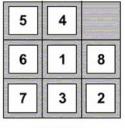
Lecture Overview

CPSC 322 - Search 1, Slide 5

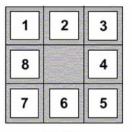
æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Searching: Intro


Example Problems

- To make things more concrete, let's think about some example problems:
 - solving a Sudoku
 - solving an 8-puzzle
 - the delivery robot planning the route it will take


æ

白 と く ヨ と く ヨ と …

What's an 8-Puzzle?

Start State

Goal State

CPSC 322 – Search 1, Slide 7

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Example Problems

- To make things more concrete, let's think about some example problems:
 - solving a Sudoku
 - solving an 8-puzzle
 - the delivery robot planning the route it will take
- All of these problems are deterministic; thus, there's no need for any observations from sensors.
- Are these single or sequential decision problems?

Example Problems

- To make things more concrete, let's think about some example problems:
 - solving a Sudoku
 - solving an 8-puzzle
 - the delivery robot planning the route it will take
- All of these problems are deterministic; thus, there's no need for any observations from sensors.
- Are these single or sequential decision problems?
 - as discussed before, the distinction isn't really useful here; problems can be seen both ways
 - CSPs: settings where there's nothing meaningfully sequential about the decision
 - Planning: decisions are always sequential
 - Now: we're going to define the underlying tools that allow us to solve both

★御▶ ★理▶ ★理▶ 二臣

Lecture Overview

2 Example Problems

CPSC 322 - Search 1, Slide 9

æ

▲圖→ ▲ 国→ ▲ 国→

State Spaces

- Idea: sometimes it doesn't matter what sequence of observations brought the world to a particular configuration; it just matters how the world is arranged now.
 - called the Markov assumption
- Represent the different configurations in which the world can be arranged as different states
 - which numbers are written in cells of the Sudoku and which are blank?
 - which numbers appear in which slots of the 8-puzzle?
 - where is the delivery robot?
- States are assignments of values to one or more variables
 - a single variable called "state"
 - x and y coordinates; etc...
- From each state, one or more actions may be available, which would move the world into a new state
 - write a new number in a blank cell of the Sudoku
 - slide a tile in the 8-puzzle
 - move the delivery robot to an adjacent location () + () + ()

Agent Design

- An agent can be thought of as a mapping from the given state to the new action that the agent will take
- However, there's a problem... often, we don't understand the domain well enough to build the mapping
 - we'd need to be able to tell the agent how it should behave in every state
 - that's why we want intelligent agents: they should decide how to act for themselves
 - in order for them to do so, we need to give them goals

・ 回 と ・ ヨ と ・ ヨ と

State Spaces

- Represent the different configurations in which the world can be arranged as different states
 - which numbers are written in cells of the Sudoku and which are blank?
 - which numbers appear in which slots of the 8-puzzle?
 - where is the delivery robot?
- States are assignments of values to one or more variables
- From each state, one or more actions may be available, which would move the world into a new state
 - write a new number in a blank cell of the Sudoku
 - slide a tile in the 8-puzzle
 - move the delivery robot to an adjacent location
- Some states are goal states
 - A Sudoku state in which all numbers are different in each box, row and column
 - The single 8-puzzle state pictured earlier
 - The state in which the delivery robot is located in room 123