Propositional Logic: Semantics and an Example

CPSC 322 - Logic 2

Textbook §5.2

Lecture Overview

Recap: Syntax

- 2 Propositional Definite Clause Logic: Semantics
- Using Logic to Model the World

Definition (atom)

An atom is a symbol starting with a lower case letter

Definition (atom)

An atom is a symbol starting with a lower case letter

Definition (body)

A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

Definition (atom)

An atom is a symbol starting with a lower case letter

Definition (body)

A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

Definition (definite clause)

A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body. (Read this as "h if b.")

Definition (atom)

An atom is a symbol starting with a lower case letter

Definition (body)

A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

Definition (definite clause)

A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body. (Read this as "h if b.")

Definition (knowledge base)

A knowledge base is a set of definite clauses

Lecture Overview

Recap: Syntax

- 2 Propositional Definite Clause Logic: Semantics
- Using Logic to Model the World

Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses and knowledge bases:

Definition (truth values of statements)

- A body $b_1 \wedge b_2$ is true in I if and only if b_1 is true in I and b_2 is true in I.
- A rule $h \leftarrow b$ is false in I if and only if b is true in I and h is false in I.
- A knowledge base KB is true in I if and only if every clause in KB is true in I.

Models and Logical Consequence

Definition (model)

A model of a set of clauses is an interpretation in which all the clauses are *true*.

Models and Logical Consequence

Definition (model)

A model of a set of clauses is an interpretation in which all the clauses are *true*.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.

- we also say that g logically follows from KB, or that KB entails g.
- In other words, $KB \models g$ if there is no interpretation in which KB is *true* and g is *false*.

$$KB = \begin{cases} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
$\overline{I_1}$	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

Which interpretations are models?

$$KB = \begin{cases} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
$\overline{I_1}$	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

is a model of KB not a model of KB is a model of KB is a model of KB not a model of KB

$$KB = \begin{cases} p \leftarrow q, \\ q, \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
$\overline{I_1}$	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

is a model of KB not a model of KB is a model of KB is a model of KB not a model of KB

Which of the following is true?

•
$$KB \models q$$
, $KB \models p$, $KB \models s$, $KB \models r$

$$KB = \begin{cases} p \leftarrow q, \\ q, \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
$\overline{I_1}$	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

is a model of KB not a model of KB is a model of KB is a model of KB not a model of KB

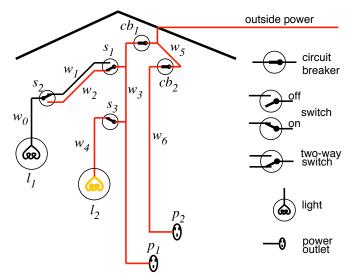
Which of the following is true?

- $KB \models q, KB \models p, KB \models s, KB \models r$
- $KB \models q, KB \models p, KB \not\models s, KB \not\models r$

Lecture Overview

Recap: Syntax

- 2 Propositional Definite Clause Logic: Semantics
- 3 Using Logic to Model the World


User's view of Semantics

- Choose a task domain: intended interpretation.
- Associate an atom with each proposition you want to represent.
- Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 4 Ask questions about the intended interpretation.
- **1** If $KB \models g$, then g must be true in the intended interpretation.
- The user can interpret the answer using their intended interpretation of the symbols.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
 - All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
 - If $KB \models g$ then g must be true in the intended interpretation.
 - If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.

Electrical Environment

Representing the Electrical Environment

 $light_{-}l_{1}$. $light_{-}l_{2}$. $down_s_1$. up_{-s_2} . $up_{-}s_{3}$. ok_{-l_1} . $ok_{-}l_{2}$. $ok cb_1$. $ok_{-}cb_{2}$. live outside. $live_l_1 \leftarrow live_w_0$ $live_-w_0 \leftarrow live_-w_1 \wedge up_-s_2$. $live_w_0 \leftarrow live_w_2 \wedge down_s_2$. $live_-w_1, \leftarrow live_-w_3 \wedge up_-s_1.$ $live_-w_2 \leftarrow live_-w_3 \wedge down_-s_1$. $live_l_2 \leftarrow live_w_4$. $live_-w_4 \leftarrow live_-w_3 \wedge up_-s_3$. $live_p_1 \leftarrow live_w_3$. $live_-w_3 \leftarrow live_-w_5 \wedge ok_-cb_1$. $live_p_2 \leftarrow live_w_6$. $live_w_6 \leftarrow live_w_5 \wedge ok_cb_2$. $live_w_5 \leftarrow live_outside$.

Role of semantics

In user's mind:

- $l2_broken$: light l2 is broken
- $sw3_up$: switch is up
- power: there is power in the building
- $unlit_{-}l2$: light l2 isn't lit
- lit_l1 : light l1 is lit

In Computer:

 $l2_broken \leftarrow sw3_up$ $\land power \land unlit_l2.$

sw3_up.

 $power \leftarrow lit_l1.$

 $unlit_l2.$

 lit_l1 .

Conclusion: 12 broken

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbols using their meaning