Decision Theory: Value Iteration

CPSC 322 - Decision Theory 4

Textbook §9.5

Decision Theory: Value Iteration

CPSC 322 - Decision Theory 4, Slide 1

▶ < 문 ▶ < 문 ▶</p>

Lecture Overview

2 Policies

3 Value Iteration

Decision Theory: Value Iteration

CPSC 322 - Decision Theory 4, Slide 2

æ

□ ► < E ► < E ►</p>

Value of Information and Control

Definition (Value of Information)

The value of information X for decision D is the utility of the the network with an arc from X to D minus the utility of the network without the arc.

Definition (Value of Control)

The value of control of a variable X is the value of the network when you make X a decision variable minus the value of the network when X is a random variable.

> < 플 > < 플 >

Markov Decision Processes

Definition (Markov Decision Process)

A Markov Decision Process (MDP) is a 5-tuple $\langle S, A, P, R, s_0 \rangle$, where each element is defined as follows:

- S: a set of states.
- A: a set of actions.
- $P(S_{t+1}|S_t, A_t)$: the dynamics.
- $R(S_t, A_t, S_{t+1})$: the reward. The agent gets a reward at each time step (rather than just a final reward).
 - R(s, a, s') is the reward received when the agent is in state s, does action a and ends up in state s'.
- s_0 : the initial state.

回 と く ヨ と く ヨ と

Policies

Rewards and Values

Suppose the agent receives the sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ What value should be assigned?

• total reward:

$$V = \sum_{i=1}^{\infty} r_i$$

• average reward:

$$V = \lim_{n \to \infty} \frac{r_1 + \dots + r_n}{n}$$

• discounted reward:

$$V = \sum_{i=1}^{\infty} \gamma^{i-1} r_i$$

• γ is the discount factor, $0\leq\gamma\leq 1$

Decision Theory: Value Iteration

Lecture Overview

3 Value Iteration

Decision Theory: Value Iteration

CPSC 322 - Decision Theory 4, Slide 6

æ

□ ► < E ► < E ►</p>

Policies

Policies

• A stationary policy is a function:

 $\pi:S\to A$

Given a state $s,\,\pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected value
 - we'll focus on the case where value is defined as discounted reward.
- For an MDP with stationary dynamics and rewards with infinite or indefinite horizon, there is always an optimal stationary policy in this case.
- Note: this means that although the environment is random, there's no benefit for the *agent* to randomize.

白 と く ヨ と く ヨ と …

Value of a Policy

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V^{\pi}(s') \right)$$

通 とう ほう うちょう

Value of the Optimal Policy

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^*(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^{*}(s, a) = \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V^{*}(s') \right)$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$\pi^{*}(s) = \arg\max_{a} Q^{*}(s, a)$$

ヨット イヨット イヨッ

Lecture Overview

2 Policies

Decision Theory: Value Iteration

CPSC 322 - Decision Theory 4, Slide 10

æ

★御★ ★注★ ★注★

Policies

Value Iteration

- Idea: Given an estimate of the k-step lookahead value function, determine the k + 1 step lookahead value function.
- Set V_0 arbitrarily.
 - e.g., zeros
- Compute Q_{i+1} and V_{i+1} from V_i :

$$Q_{i+1}(s,a) = \sum_{s'} P(s'|a,s) \left(r(s,a,s') + \gamma V_i(s') \right)$$
$$V_{i+1}(s) = \max_{a} Q_{i+1}(s,a)$$

• If we intersect these equations at Q_{i+1} , we get an update equation for V:

$$V_{i+1}(s) = \max_{a} \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V_i(s') \right)$$

Decision Theory: Value Iteration

高 とう ヨン うまと

Pseudocode for Value Iteration

```
procedure value_iteration(P, r, \theta)
```

inputs:

```
P is state transition function specifying P(s'|a, s)
```

```
r is a reward function R(s, a, s')
```

 θ a threshold $\theta > 0$

returns:

 $\pi[s]$ approximately optimal policy

V[s] value function

data structures:

 $V_k[s]$ a sequence of value functions

begin

```
for k = 1 : \infty
for each state s
V_k[s] = \max_a \sum_{s'} P(s'|a, s)(R(s, a, s') + \gamma V_{k-1}[s'])
if \forall s | V_k(s) - V_{k-1}(s) | < \theta
for each state s
\pi(s) = \arg \max_a \sum_{s'} P(s'|a, s)(R(s, a, s') + \gamma V_{k-1}[s'])
return \pi, V_k
```

end

3

イロト イヨト イヨト イヨト

Value Iteration Example: Gridworld

See

http://www.cs.ubc.ca/spider/poole/demos/mdp/vi.html.

Decision Theory: Value Iteration

과 《 @ ▷ 《 볼 ▷ 《 볼 ▷ 볼 · ⁄) 역 (CPSC 322 - Decision Theory 4, Slide 13