Intro

Recap

# Decision Theory: Single-Stage Decisions

### CPSC 322 - Decision Theory 1

### Textbook §9.1–9.2

**Decision Theory: Single-Stage Decisions** 

CPSC 322 - Decision Theory 1, Slide 1

▶ < 별 ▶ < 별 ▶</p>

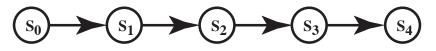
# Lecture Overview







### 4 Single-Stage Decisions


Decision Theory: Single-Stage Decisions

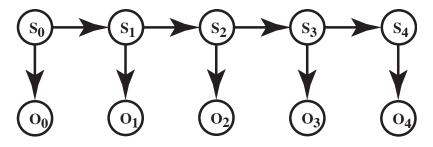
CPSC 322 - Decision Theory 1, Slide 2

æ

白 ト イヨト イヨト

• A Markov chain is a special sort of belief network:




- Thus  $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t).$
- Often  $S_t$  represents the state at time t. Intuitively  $S_t$  conveys all of the information about the history that can affect the future states.
- "The past is independent of the future given the present."

向下 イヨト イヨト

Recap Intro Decision Problems Single-Stage Decisions

# Hidden Markov Model

• A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:



- $P(S_0)$  specifies initial conditions
- $P(S_{t+1}|S_t)$  specifies the dynamics
- $P(O_t|S_t)$  specifies the sensor model









Decision Theory: Single-Stage Decisions

CPSC 322 - Decision Theory 1, Slide 5

æ

回 と く ヨ と く ヨ と

 Recap
 Intro
 Decision Problems
 Single-Stage Decisions

 Decisions Under Uncertainty
 Single-Stage Decisions
 Single-Stage Decisions

- In the first part of the course we focused on decision making in domains where the environment was understood with certainty
  - Search/CSPs: single-stage decisions
  - Planning: sequential decisions
- In uncertain domains, we've so far only considered how to represent and update beliefs
- What if an agent has to make decisions in a domain that involves uncertainty?
  - this is likely: one of the main reasons to represent the world probabilistically is to be able to use these beliefs as the basis for making decisions

→ < 注→ < 注→</p>

| Recap     | Intro       | Decision Problems | Single-Stage Decisions |
|-----------|-------------|-------------------|------------------------|
| Decisions | Under Uncei | rtainty           |                        |
|           |             |                   |                        |

- An agent's decision will depend on:
  - what actions are available
  - 2 what beliefs the agent has
    - note: this replaces "state" from the deterministic setting
  - the agent's goals
- Differences between the deterministic and probabilistic settings
  - we've already seen that it makes sense to represent beliefs differently.
  - Today we'll speak about representing actions and goals
    - actions will be pretty straightforward: decision variables.
    - we'll move from all-or-nothing goals to a richer notion: rating how happy the agent is in different situations.
    - putting these together, we'll extend belief networks to make a new representation called decision networks.







### ④ Single-Stage Decisions

Decision Theory: Single-Stage Decisions

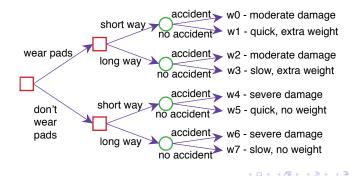


æ

白 ト く ヨ ト く ヨ ト

# Representing Actions: Decision Variables

Intro


- Decision variables are like random variables whose value an agent gets to set.
- A possible world specifies a value for each random variable *and* each decision variable.
  - For each assignment of values to all decision variables, the measures of the worlds satisfying that assignment sum to 1.
  - The probability of a proposition is undefined unless you condition on the values of all decision variables.

Recap

Intro

### Decision Tree for Delivery Robot

- The robot can choose to wear pads to protect itself or not.
- The robot can choose to go the short way past the stairs or a long way that reduces the chance of an accident.
- There is one random variable indicating whether there is an accident.



Recap

| Recap   | Intro | Decision Problems | Single-Stage Decisions |  |  |  |  |  |
|---------|-------|-------------------|------------------------|--|--|--|--|--|
| Utility |       |                   |                        |  |  |  |  |  |

- Utility: a measure of desirability of worlds to an agent.
  - Let U be a real-valued function such that  $U(\omega)$  represents an agent's degree of preference for world  $\omega.$
- Simple goals can still be specified, using a boolean utility function:
  - $\bullet\,$  worlds that satisfy the goal have utility  $1\,$
  - $\bullet\,$  other worlds have utility  $0\,$
- Utilities can also be more complicated. For example, in the delivery robot domain, utility might be the sum of:
  - some function of the amount of damage to a robot
  - how much energy is left
  - what goals are achieved
  - how much time it has taken.

• • = • • = •

How should we define the utility of an achieving a certain probability distribution over possible worlds?

白 ト く ヨ ト く ヨ ト

| Recap    | Intro   | Decision Problems | Single-Stage Decisions |
|----------|---------|-------------------|------------------------|
| Expected | Utility |                   |                        |

How should we define the utility of an achieving a certain probability distribution over possible worlds?

- The expected value of a function of possible worlds is its average value, weighting possible worlds by their probability.
- Suppose U(w) is the utility of world world w.

# Definition (expected utility) The expected utility is $\mathbb{E}(U) = \sum_{\omega \in \Omega} P(\omega)U(\omega)$ . Definition (conditional expected utility) The conditional expected utility given e is

$$\mathbb{E}(U|e) = \sum_{\omega \models e} P(\omega|e)U(\omega).$$

### Lecture Overview









**Decision Theory: Single-Stage Decisions** 

CPSC 322 - Decision Theory 1, Slide 13

æ

回 と く ヨ と く ヨ と



- Given a single decision variable, the agent can choose  $D = d_i$  for any  $d_i \in dom(D)$ .
- Write expected utility of taking decision  $D = d_i$  as  $\mathbb{E}(U|D = d_i)$ .

### Definition (optimal single-stage decision)

An optimal single-stage decision is the decision  $D = d_{max}$  whose expected utility is maximal:

$$d_{max} \in \underset{d_i \in dom(D)}{\arg \max} \mathbb{E}(U|D = d_i).$$

### Single-Stage-stage decision networks

Extend belief networks with:

- Decision nodes, that the agent chooses the value for. Domain is the set of possible actions. Drawn as a rectangle.
- Utility node, the parents are the variables on which the utility depends. Drawn as a diamond.



This shows explicitly which nodes affect whether there is an accident.

Decision Theory: Single-Stage Decisions

### **Decision Networks**







- A random variable is drawn as an ellipse. Arcs into the node represent probabilistic dependence.
- A decision variable is drawn as an rectangle. Arcs into the node represent information available when the decision is made.
- A value node is drawn as a diamond. Arcs into the node represent values that the value depends on.

 Recap
 Intro
 Decision Problems
 Single-Stage Decisions

 Finding the optimal decision

 • Suppose the random variables are  $X_1, \ldots, X_n$ , and utility depends on  $X_{i_1}, \ldots, X_{i_k}$ 
 $\mathbb{E}(U|D) = \sum_{X_1, \ldots, X_n} P(X_1, \ldots, X_n | D) U(X_{i_1}, \ldots, X_{i_k})$ 
 $\sum_{X_1, \ldots, X_n} P(X_1, \ldots, X_n | D) U(X_{i_1}, \ldots, X_{i_k})$ 

 $= \sum_{X_1,...,X_n} \prod_{i=1}^n P(X_i | pX_i, D) U(X_{i_1}, \dots, X_{i_k})$ 

Recap Intro Decision Problems Single-Stage Decisions Finding the optimal decision • Suppose the random variables are  $X_1, \ldots, X_n$ , and utility depends on  $X_{i_1}, \ldots, X_{i_k}$  $\mathbb{E}(U|D) = \sum P(X_1, \dots, X_n|D)U(X_{i_1}, \dots, X_{i_k})$  $X_1, ..., X_n$  $= \sum \prod_{i=1}^{n} P(X_i|pX_i, D)U(X_{i_1}, \dots, X_{i_k})$  $X_1 \dots X_n i = 1$ 

To find the optimal decision:

- Create a factor for each conditional probability and for the utility
- Sum out all of the random variables
- $\bullet\,$  This creates a factor on D that gives the expected utility for each D
- $\bullet\,$  Choose the D with the maximum value in the factor.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

| $\frown$    | <         |     | Which  | Way   | Accid | lent | Pr  | obability |
|-------------|-----------|-----|--------|-------|-------|------|-----|-----------|
| Accident    | $\sim$    |     | long   |       | true  |      | 0.0 | )1        |
| Which Way   | Utility   |     | long   |       | false |      | 0.9 | 9         |
| Wear Pads   |           |     | short  |       | true  |      | 0.2 | 2         |
| incur i uus |           |     | short  |       | false |      | 0.8 | 3         |
|             | Which Way | Ac  | cident | Wear  | Pads  | Util | ity |           |
|             | long      | tru | ie     | true  |       | 30   |     |           |
|             | long      | tru | ie     | false |       | 0    |     |           |
|             | long      | fal | se     | true  |       | 75   |     |           |
|             | long      | fal | se     | false |       | 80   |     |           |
|             | short     | tru | ie     | true  |       | 35   |     |           |
|             | short     | tru | ie     | false |       | 3    |     |           |
|             | short     | fal | se     | true  |       | 95   |     |           |
|             | short     | fal | se     | false |       | 100  |     |           |

Decision Theory: Single-Stage Decisions

★御★ ★注★ ★注★

| AccidentWhich WayAccidentProbabilityWhich WayUtilitylongtrue0.01longfalse0.99 |     |
|-------------------------------------------------------------------------------|-----|
| long true 0.01                                                                |     |
| Which Way Utility long false 0.99                                             |     |
|                                                                               |     |
| short true 0.2                                                                |     |
| Wear Pads short false 0.8                                                     |     |
|                                                                               |     |
| Which Way Accident Wear Pads Utility                                          |     |
| long true true 30                                                             |     |
| long true false 0                                                             |     |
| long false true 75                                                            |     |
| long false false 80                                                           |     |
| short true true 35                                                            |     |
| short true false 3                                                            |     |
| short false true 95                                                           |     |
| short false false 100                                                         |     |
| Which Way Wear pads Value                                                     |     |
| long true 0.01*30+0.99*75=74.                                                 | .55 |
| Sum out Accident: long false 0.01*0+0.99*80=79.2                              | 2   |
| short true 0.2*35+0.8*95=83                                                   |     |
| short false 0.2*3+0.8*100=80.6                                                |     |

æ

回 と く ヨ と く ヨ と

|                   |         |        | Whic   | h Way  | Acci  | dent                | Pr            | obability | ]     |
|-------------------|---------|--------|--------|--------|-------|---------------------|---------------|-----------|-------|
| Accident          |         | long   |        | true   |       | 0.0                 | )1            | 1         |       |
| Which Way Utility |         |        | long   | false  |       | 0.9                 |               | 99        |       |
| Wear Pads         | · ~     |        | short  |        | true  |                     | 0.2           | 2         |       |
| wear Paas         |         |        | short  |        | false |                     | 0.8           |           |       |
|                   | Which W | 'ay Ac | cident | Wear   | Pads  | Util                | ity           |           | 5     |
|                   | long    | tru    | le     | true   |       | 30                  |               |           |       |
|                   | long    | trι    | ie     | false  |       | 0                   |               |           |       |
| long              |         | fal    | se     | true   |       | 75                  |               |           |       |
|                   | long    | fal    | se     | false  |       | 80                  |               |           |       |
| short<br>short    |         | tru    | le     | true   |       | 35                  |               |           |       |
|                   |         | trı    | le     | false  | alse  |                     |               |           |       |
|                   | short   | fal    | se     | true   |       | 95                  |               |           |       |
| short             |         | fal    | se     | false  |       | 100                 |               |           |       |
|                   |         | Which  | Way    | Wear p | ads   | Value               | 2             |           |       |
|                   | Ì       | long   |        | true   |       | 0.01*               | 30+           | 0.99*75=  | 74.55 |
| Sum out Accident: | long    |        | false  | false  |       | 0.01*0+0.99*80=79.2 |               |           |       |
|                   |         | short  |        | true   |       | 0.2*3               | *35+0.8*95=83 |           |       |
|                   |         | short  |        | false  |       | 0.2*3               | +0.8          | 8*100=80  | 0.6   |

æ

回 と く ヨ と く ヨ と

| $\frown$          | _       |       | Whic    | h Way   | Acci  | dent                        | Pro      | obability |    |
|-------------------|---------|-------|---------|---------|-------|-----------------------------|----------|-----------|----|
| Accident          |         | long  |         | true    |       | 0.0                         | )1       | ĺ         |    |
| Which Way         | Utili   | ty    | long    |         | false |                             | 0.9      | 9         |    |
| -                 | · · ~   |       | short   |         | true  |                             | 0.2      | 2         |    |
| Wear Pads         | J       |       | short   | short   |       | false                       |          | 0.8       |    |
|                   | Which W |       | cident  | Wear    | Dada  | Util                        | :+       |           | J  |
|                   | which w | ay Ac | .ciuein | vvear   | i aus |                             | ity      |           |    |
|                   | long    | trι   | Je      | true    |       | 30                          |          |           |    |
|                   | long    | trı   | Je      | false   |       | 0                           |          |           |    |
| long              |         | fal   | se      | true    |       | 75                          |          |           |    |
|                   | long    | fal   | se      | false   |       | 80                          |          |           |    |
| short             |         | trı   | le      | true    |       | 35                          |          |           |    |
|                   | short   | trı   | le      | false   |       | 3                           |          |           |    |
|                   | short   | fal   | se      | true    |       | 95                          |          |           |    |
| short             |         | fal   | se      | false   |       | 100                         |          |           |    |
|                   |         | Which | Way     | Wear pa | ads   | Value                       | :        | -         |    |
|                   | long    |       | true    |         | 0.01* | 30+                         | 0.99*75= | 74.55     |    |
| Sum out Accident: | long    |       | false   |         | 0.01* | 0+0                         | .99*80=7 | 9.2       |    |
|                   | short   |       | true    |         | 0.2*3 | *35+0.8*95= <mark>83</mark> |          |           |    |
|                   |         | short |         | false   |       | 0.2*3                       | +0.8     | 8*100=80  | .6 |
|                   |         |       |         |         |       |                             |          |           |    |

Thus the optimal policy is to take the short way and wear pads, with an expected

utility of 83.