Hidden Markov Models

CPSC 322 - Uncertainty 7

Textbook §10.5

Lecture Overview

Recap

2 Hidden Markov Models

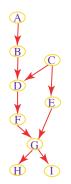
Variable elimination algorithm

To compute $P(Q|Y_1 = v_1 \land \ldots \land Y_j = v_j)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- ullet For each of the other variables $Z_i \in \{Z_1, \dots, Z_k\}$, sum out Z_i
- Multiply the remaining factors.
- Normalize by dividing the resulting factor f(Q) by $\sum_{Q} f(Q)$.

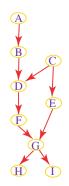
Variable elimination example

- $P(G,H) = \sum_{A,B,C,D,E,F,I} P(A,B,C,D,E,F,G,H,I)$
- $P(G, H) = \sum_{A,B,C,D,E,F,I} P(A) \cdot P(B|A) \cdot P(C) \cdot P(D|B,C) \cdot P(E|C) \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$



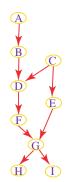
Compute $P(G|H = h_1)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H) = \sum_{A,B,C,D,E,F,I} P(A) \cdot P(B|A) \cdot P(C) \cdot P(D|B,C) \cdot P(E|C) \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$
- Eliminate A: $P(G, H) = \sum_{B,C,D,E,F,I} f_1(B) \cdot P(C) \cdot P(D|B,C) \cdot P(E|C) \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$



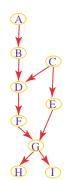
• $f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$

- $P(G, H) = \sum_{B,C,D,E,F,I} f_1(B) \cdot P(C) \cdot P(D|B,C) \cdot P(E|C) \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$
- Eliminate $C: P(G, H) = \sum_{B,D,E,F,I} f_1(B) \cdot \frac{f_2(B,D,E)}{f_2(B,D,E)} \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$



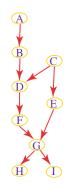
- $f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$
- $f_2(B,D,E) := \sum_{c \in dom(C)} P(C=c) \cdot P(D|B,C=c) \cdot P(E|C=c)$

- $P(G,H) = \sum_{B,D,E,F,I} f_1(B) \cdot f_2(B,D,E) \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$
- Eliminate E: $P(G,H) = \sum_{B,D,F,I} f_1(B) \cdot f_3(B,D,F,G) \cdot P(F|D) \cdot P(H|G) \cdot P(I|G)$



- $f_1(B) := \sum_{a \in dom(A)} P(A=a) \cdot P(B|A=a)$
- $f_2(B,D,E) := \sum_{c \in dom(C)} P(C=c) \cdot P(D|B,C=c) \cdot P(E|C=c)$
- $f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$

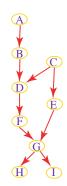
- $P(G, H) = \sum_{B,D,F,I} f_1(B) \cdot f_3(B,D,F,G) \cdot P(F|D) \cdot P(H|G) \cdot P(I|G)$
- Observe $H = h_1$: $P(G, H = h_1) = \sum_{B \mid D \mid F \mid I} f_1(B) \cdot f_3(B, D, F, G) \cdot P(F|D) \cdot f_4(G) \cdot P(I|G)$



- $f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$
- $f_2(B,D,E) := \sum_{c \in dom(C)} P(C=c) \cdot P(D|B,C=c) \cdot P(E|C=c)$
- $f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$
- $f_4(G) := P(H = h_1|G)$

- $P(G, H = h_1) = \sum_{B,D,F,I} f_1(B) \cdot f_3(B,D,F,G) \cdot P(F|D) \cdot f_4(G) \cdot P(I|G)$
- Eliminate *I*:

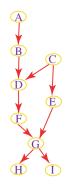
$$P(G, H = h_1) = \sum_{B,D,F} f_1(B) \cdot f_3(B, D, F, G) \cdot P(F|D) \cdot f_4(G) \cdot f_5(G)$$



- $f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$
- $f_2(B, D, E) := \sum_{c \in dom(C)} P(C = c) \cdot P(D|B, C = c) \cdot P(E|C = c)$
- $f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$
- $f_4(G) := P(H = h_1|G)$
- $f_5(G) := \sum_{i \in dom(I)} P(I = i | G)$

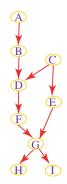
- $P(G, H = h_1) = \sum_{B,D,F} f_1(B) \cdot f_3(B, D, F, G) \cdot P(F|D) \cdot f_4(G) \cdot f_5(G)$
- Eliminate B:

$$P(G, H = h_1) = \sum_{D,F} f_6(D, F, G) \cdot P(F|D) \cdot f_4(G) \cdot f_5(G)$$



- $f_1(B) := \sum_{a \in dom(A)} P(A=a) \cdot P(B|A=a)$
- $f_2(B,D,E) := \sum_{c \in dom(C)} P(C=c) \cdot P(D|B,C=c) \cdot P(E|C=c)$
- $f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$
- $f_4(G) := P(H = h_1|G)$
- $f_5(G) := \sum_{i \in dom(I)} P(I = i | G)$
- $f_6(D, F, G) := \sum_{b \in dom(B)} f_1(B = b) \cdot f_3(B = b, D, F, G)$

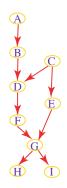
- $P(G, H = h_1) = \sum_{D,F} f_6(D, F, G) \cdot P(F|D) \cdot f_4(G) \cdot f_5(G)$
- Eliminate D: $P(G, H = h_1) = \sum_{F} f_7(F, G) \cdot f_4(G) \cdot f_5(G)$



•
$$f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$$

- $f_2(B, D, E) := \sum_{c \in dom(C)} P(C = c) \cdot P(D|B, C = c) \cdot P(E|C = c)$
- $f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$
- $f_4(G) := P(H = h_1|G)$
- $f_5(G) := \sum_{i \in dom(I)} P(I = i | G)$
- $f_6(D, F, G) := \sum_{b \in dom(B)} f_1(B = b) \cdot f_3(B = b, D, F, G)$
- $f_7(F,G) := \sum_{d \in dom(D)} f_6(D = d, F, G) \cdot P(F|D = d)$

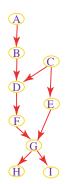
- $P(G, H = h_1) = \sum_{F} f_7(F, G) \cdot f_4(G) \cdot f_5(G)$
- Eliminate $F: P(G, H = h_1) = f_8(G) \cdot f_4(G) \cdot f_5(G)$



•
$$f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$$

- $f_2(B, D, E) := \sum_{c \in dom(C)} P(C = c) \cdot P(D|B, C = c) \cdot P(E|C = c)$
- $f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$
- $f_4(G) := P(H = h_1|G)$
- $f_5(G) := \sum_{i \in dom(I)} P(I = i | G)$
- $f_6(D, F, G) := \sum_{b \in dom(B)} f_1(B = b) \cdot f_3(B = b, D, F, G)$
- $f_7(F,G) := \sum_{d \in dom(D)} f_6(D = d, F, G) \cdot P(F|D = d)$
- $f_8(G) := \sum_{f \in dom(F)} f_7(F = f, G)$

- $P(G, H = h_1) = f_8(G) \cdot f_4(G) \cdot f_5(G)$
- Normalize: $P(G|H=h_1) = \frac{P(G,H=h_1)}{\sum_{g \in dom(G)} P(G,H=h_1)}$



•
$$f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$$

•
$$f_2(B,D,E) := \sum_{c \in dom(C)} P(C=c) \cdot P(D|B,C=c) \cdot P(E|C=c)$$

•
$$f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$$

•
$$f_4(G) := P(H = h_1|G)$$

•
$$f_5(G) := \sum_{i \in dom(I)} P(I = i | G)$$

•
$$f_6(D, F, G) := \sum_{b \in dom(B)} f_1(B = b) \cdot f_3(B = b, D, F, G)$$

•
$$f_7(F,G) := \sum_{d \in dom(D)} f_6(D = d, F, G) \cdot P(F|D = d)$$

•
$$f_8(G) := \sum_{f \in dom(F)} f_7(F = f, G)$$

- That's great... but it looks incredibly painful for large graphs.
- And... why did we bother learning conditional independence?
 Does it help us at all?

- That's great... but it looks incredibly painful for large graphs.
- And... why did we bother learning conditional independence?
 Does it help us at all?
 - yes—we use the chain rule decomposition right at the beginning

- That's great... but it looks incredibly painful for large graphs.
- And... why did we bother learning conditional independence?
 Does it help us at all?
 - yes—we use the chain rule decomposition right at the beginning
- Can we use our knowledge of conditional independence to make this calculation even simpler?

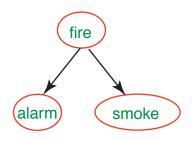
- That's great... but it looks incredibly painful for large graphs.
- And... why did we bother learning conditional independence?
 Does it help us at all?
 - yes—we use the chain rule decomposition right at the beginning
- Can we use our knowledge of conditional independence to make this calculation even simpler?
 - yes—there are some variables that we don't have to sum out
 - intuitively, they're the ones that are "pre-summed-out" in our tables
 - example: summing out I on the previous slide

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.

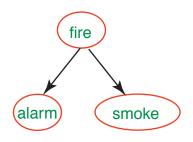


Can we justify that on a threenode graph—Fire, Alarm, and Smoke—when we ask for:

 \bullet P(Fire)?

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.



Can we justify that on a threenode graph—Fire, Alarm, and Smoke—when we ask for:

- \bullet P(Fire)?
- \bullet $P(Fire \mid Alarm)$?

Lecture Overview

Recap

2 Hidden Markov Models

Markov chain

• A Markov chain is a special sort of belief network:

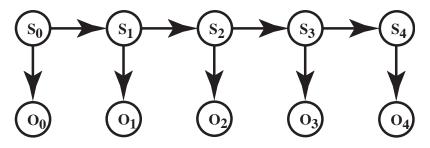
- Thus $P(S_{t+1}|S_0,\ldots,S_t) = P(S_{t+1}|S_t)$.
- Often S_t represents the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The past is independent of the future given the present."

Stationary Markov chain

- A stationary Markov chain is when for all t > 0, t' > 0, $P(S_{t+1}|S_t) = P(S_{t'+1}|S_{t'})$.
- We specify $P(S_0)$ and $P(S_{t+1}|S_t)$.
 - Simple model, easy to specify
 - Often the natural model
 - The network can extend indefinitely

Hidden Markov Model

 A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

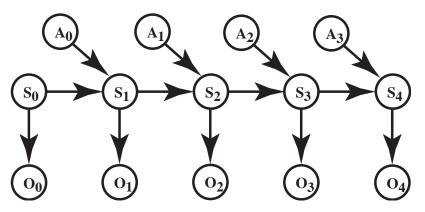


- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics
- ullet $P(O_t|S_t)$ specifies the sensor model

Example: localization

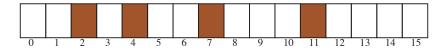
 Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization

• This can be represented by the augmented HMM:



Example localization domain

• Circular corridor, with 16 locations:



- Doors at positions: 2, 4, 7, 11.
- Noisy Sensors
- Stochastic Dynamics
- Robot starts at an unknown location and must determine where it is.

Example Sensor Model

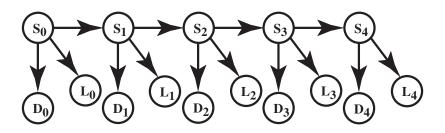
- $P(Observe\ Door\ |\ At\ Door) = 0.8$
- $P(Observe\ Door\ |\ Not\ At\ Door) = 0.1$

Example Dynamics Model

- $P(loc_{t+1} = L|action_t = goRight \land loc_t = L) = 0.1$
- $P(loc_{t+1} = L + 1 | action_t = goRight \land loc_t = L) = 0.8$
- $P(loc_{t+1} = L + 2|action_t = goRight \land loc_t = L) = 0.074$
- $P(loc_{t+1} = L' | action_t = goRight \land loc_t = L) = 0.002$ for any other location L'.
 - All location arithmetic is modulo 16.
 - The action goLeft works the same but to the left.

Combining sensor information

 Example: we can combine information from a light sensor and the door sensor: "Sensor Fusion"



- S_t : robot location at time t
- D_t : door sensor value at time t
- L_t : light sensor value at time t

Localization demo

 http://www.cs.ubc.ca/spider/poole/demos/ localization/localization.html