Hidden Markov Models

CPSC 322 - Uncertainty 7

Textbook $\S 10.5$

Lecture Overview

(2) Hidden Markov Models

Variable elimination algorithm

To compute $P\left(Q \mid Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}\right)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- For each of the other variables $Z_{i} \in\left\{Z_{1}, \ldots, Z_{k}\right\}$, sum out Z_{i}
- Multiply the remaining factors.
- Normalize by dividing the resulting factor $f(Q)$ by $\sum_{Q} f(Q)$.

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A, B, C, D, E, F, G, H, I)$
- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(D \mid B, C)$.
$P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(D \mid B, C)$. $P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate $A: P(G, H)=\sum_{B, C, D, E, F, I} f_{1}(B) \cdot P(C) \cdot P(D \mid B, C)$. $P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{B, C, D, E, F, I} f_{1}(B) \cdot P(C) \cdot P(D \mid B, C) \cdot P(E \mid C) \cdot P(F \mid D)$. $P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate $C: P(G, H)=$

$$
\sum_{B, D, E, F, I} f_{1}(B) \cdot f_{2}(B, D, E) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=$
$\sum_{B, D, E, F, I} f_{1}(B) \cdot f_{2}(B, D, E) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate E :

$$
P(G, H)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot P(H \mid G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot P(H \mid G) \cdot P(I \mid G)$
- Observe $H=h_{1}$:

$$
P\left(G, H=h_{1}\right)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot P(I \mid G)$
- Eliminate I :

$$
P\left(G, H=h_{1}\right)=\sum_{B, D, F} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{B, D, F} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate B :

$$
P\left(G, H=h_{1}\right)=\sum_{D, F} f_{6}(D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{D, F} f_{6}(D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate $D: P\left(G, H=h_{1}\right)=\sum_{F} f_{7}(F, G) \cdot f_{4}(G) \cdot f_{5}(G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{F} f_{7}(F, G) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate $F: P\left(G, H=h_{1}\right)=f_{8}(G) \cdot f_{4}(G) \cdot f_{5}(G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$
- $f_{8}(G):=\sum_{f \in \operatorname{dom}(F)} f_{7}(F=f, G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=f_{8}(G) \cdot f_{4}(G) \cdot f_{5}(G)$
- Normalize: $P\left(G \mid H=h_{1}\right)=\frac{P\left(G, H=h_{1}\right)}{\sum_{g \in \operatorname{dom}(G)} P\left(G, H=h_{1}\right)}$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$
- $f_{8}(G):=\sum_{f \in \operatorname{dom}(F)} f_{7}(F=f, G)$

What good was Conditional Independence?

- That's great. . . but it looks incredibly painful for large graphs.
- And. . . why did we bother learning conditional independence? Does it help us at all?

What good was Conditional Independence?

- That's great. . . but it looks incredibly painful for large graphs.
- And. . . why did we bother learning conditional independence? Does it help us at all?
- yes-we use the chain rule decomposition right at the beginning

What good was Conditional Independence?

- That's great. . . but it looks incredibly painful for large graphs.
- And... why did we bother learning conditional independence? Does it help us at all?
- yes-we use the chain rule decomposition right at the beginning
- Can we use our knowledge of conditional independence to make this calculation even simpler?

What good was Conditional Independence?

- That's great. . . but it looks incredibly painful for large graphs.
- And. . . why did we bother learning conditional independence? Does it help us at all?
- yes-we use the chain rule decomposition right at the beginning
- Can we use our knowledge of conditional independence to make this calculation even simpler?
- yes-there are some variables that we don't have to sum out
- intuitively, they're the ones that are "pre-summed-out" in our tables
- example: summing out I on the previous slide

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.

Can we justify that on a threenode graph-Fire, Alarm, and Smoke-when we ask for:

- $P($ Fire $)$?

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.

Can we justify that on a threenode graph-Fire, Alarm, and Smoke-when we ask for:

- P(Fire)?
- $P($ Fire \mid Alarm $)$?

Lecture Overview

(1) Recap

(2) Hidden Markov Models

Markov chain

- A Markov chain is a special sort of belief network:

- Thus $P\left(S_{t+1} \mid S_{0}, \ldots, S_{t}\right)=P\left(S_{t+1} \mid S_{t}\right)$.
- Often S_{t} represents the state at time t. Intuitively S_{t} conveys all of the information about the history that can affect the future states.
- "The past is independent of the future given the present."

Stationary Markov chain

- A stationary Markov chain is when for all $t>0, t^{\prime}>0$, $P\left(S_{t+1} \mid S_{t}\right)=P\left(S_{t^{\prime}+1} \mid S_{t^{\prime}}\right)$.
- We specify $P\left(S_{0}\right)$ and $P\left(S_{t+1} \mid S_{t}\right)$.
- Simple model, easy to specify
- Often the natural model
- The network can extend indefinitely

Hidden Markov Model

- A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{t+1} \mid S_{t}\right)$ specifies the dynamics
- $P\left(O_{t} \mid S_{t}\right)$ specifies the sensor model

Example: localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM:

Example localization domain

- Circular corridor, with 16 locations:

- Doors at positions: 2, 4, 7, 11 .
- Noisy Sensors
- Stochastic Dynamics
- Robot starts at an unknown location and must determine where it is.

Example Sensor Model

- $P($ Observe Door \mid At Door $)=0.8$
- $P($ Observe Door \mid Not At Door $)=0.1$

Example Dynamics Model

- $P\left(\right.$ loc $_{t+1}=L \mid$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.1$
- $P\left(\right.$ loc $_{t+1}=L+1 \mid$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.8$
- $P\left(\right.$ loc $_{t+1}=L+2 \mid$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.074$
- $P\left(\right.$ loc $_{t+1}=L^{\prime} \mid$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.002$ for any other location L^{\prime}.
- All location arithmetic is modulo 16 .
- The action goLeft works the same but to the left.

Combining sensor information

- Example: we can combine information from a light sensor and the door sensor: "Sensor Fusion"

- S_{t} : robot location at time t
- D_{t} : door sensor value at time t
- L_{t} : light sensor value at time t

Localization demo

- http://www.cs.ubc.ca/spider/poole/demos/ localization/localization.html

