Reasoning Under Uncertainty: Introduction to Probability

CPSC 322 - Uncertainty 1

Textbook §10.1

Lecture Overview

(1) Probability Introduction

(2) Syntax and Semantics of Probability

(3) Probability Distributions

Using Uncertain Knowledge

- Agents don't have complete knowledge about the world.
- Agents need to make decisions based on their uncertainty.
- It isn't enough to assume what the world is like. Example: wearing a seat belt.
- An agent needs to reason about its uncertainty.
- When an agent makes an action under uncertainty, it is gambling \Longrightarrow probability.

Probability

- Probability is formal measure of uncertainty. There are two camps:
- Frequentists: believe that probability represents something objective, and compute probabilities by counting the frequencies of different events
- Bayesians: believe that probability represents something subjective, and understand probabilities as degrees of belief.
- They compute probabilities by starting with prior beliefs, and then updating beliefs when they get new data.
- Example: Your degree of belief that a bird can fly is your measure of belief in the flying ability of an individual based only on the knowledge that the individual is a bird.
- Other agents may have different probabilities, as they may have had different experiences with birds or different knowledge about this particular bird.
- An agent's belief in a bird's flying ability is affected by what the agent knows about that bird.

Numerical Measures of Belief

- Belief in proposition, f, can be measured in terms of a number between 0 and 1 - this is the probability of f.
- The probability f is 0 means that f is believed to be definitely false.
- The probability f is 1 means that f is believed to be definitely true.
- Using 0 and 1 is purely a convention.
- f has a probability between 0 and 1 , doesn't mean f is true to some degree, but means you are ignorant of its truth value. Probability is a measure of your ignorance.

Random Variables

Definition (random variable)

A random variable is a variable that is randomly assigned one of a number of different values.

Definition (domain)

The domain of a random variable X, written $\operatorname{dom}(X)$, is the set of values X can take.

- A tuple of random variables $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is a complex random variable with domain $\operatorname{dom}\left(X_{1}\right) \times \cdots \times \operatorname{dom}\left(X_{n}\right)$.
- Often the tuple is written as X_{1}, \ldots, X_{n}.
- Assignment $X=x$ means variable X has value x.
- A proposition is a Boolean formula made from assignments of values to variables.

Lecture Overview

(1) Probability Introduction
(2) Syntax and Semantics of Probability

(3) Probability Distributions

Possible World Semantics

Definition (possible world)

A possible world specifies an assignment of one value to each random variable.

- $w \models X=x$ means variable X is assigned value x in world w.
- Logical connectives have their standard meanings:

$$
\begin{aligned}
w \models \alpha \wedge \beta \text { if } w \models \alpha \text { and } w \models \beta \\
w \models \alpha \vee \beta \text { if } w \models \alpha \text { or } w \models \beta \\
w \models \neg \alpha \text { if } w \neq \alpha
\end{aligned}
$$

- Let Ω be the set of all possible worlds.

Semantics of Probability: finite case

When there are a finite number of possible worlds:

- Define a nonnegative measure $\mu(w)$ to each world w so that $\sum_{w} \mu(w)=1$
- The measures of the possible worlds sum to 1 .
- The measure specifies how much you think the world w is like the real world.

Definition (probability)

The probability of proposition f is defined by:

$$
P(f)=\sum_{w \models f} \mu(w) .
$$

Axioms of Probability: finite case

Four axioms define what follows from a set of probabilities:
(1) Axiom $1 P(f)=P(g)$ if $f \leftrightarrow g$ is a tautology.

- That is, logically equivalent formulae have the same probability.
(2) Axiom $20 \leq P(f)$ for any formula f.
(3) Axiom $3 P(\tau)=1$ if τ is a tautology.
(9) Axiom $4 P(f \vee g)=P(f)+P(g)$ if $\neg(f \wedge g)$ is a tautology.

These axioms are sound and complete with respect to the semantics.

- if you obey these axioms, there will exist some μ which is consistent with your P
- there exists some P which obeys these axioms for any given μ

Semantics of Probability: general case

In the general case (possibly infinite set of possible worlds) we have a measure on sets of possible worlds, satisfying:

- $\mu(S) \geq 0$ for $S \subseteq \Omega$
- $\mu(\Omega)=1$
- $\mu\left(S_{1} \cup S_{2}\right)=\mu\left(S_{1}\right)+\mu\left(S_{2}\right)$ if $S_{1} \cap S_{2}=\{ \}$.

Lecture Overview

(1) Probability Introduction

(2) Syntax and Semantics of Probability

(3) Probability Distributions

Probability Distributions

Definition (probability distribution)

A probability distribution P on a random variable X is a function $\operatorname{dom}(X) \rightarrow[0,1]$ such that

$$
x \mapsto P(X=x) .
$$

- When $\operatorname{dom}(X)$ is infinite we need a probability density function.

Joint Distribution and Marginalization

- When there are multiple random variables, their joint distribution is a probability distribution over the variables' Cartesian product
- E.g., $P(X, Y, Z)$ means $P(\langle X, Y, Z\rangle)$.
- Think of a joint distribution over n variables as an n-dimensional table
- Each entry, indexed by $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$, corresponds to $P\left(X_{1}=x_{1} \wedge \ldots \wedge X_{n}=x_{n}\right)$.
- The sum of entries across the whole table is 1 .
- Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:
- E.g., $P(X, Y)=\sum_{z \in \operatorname{dom}(Z)} P(X, Y, Z=z)$.
- This corresponds to summing out a dimension in the table.
- The new table still sums to 1 .

