Reasoning Under Uncertainty: Variable Elimination

CPSC 322 - Uncertainty 6

Textbook §10.4

Lecture Overview

(1) Recap

(2) Variable Elimination

(3) Variable Elimination Example

Chain

- alarm and report are independent: false.
- alarm and report are independent given leaving: true.
- Intuitively, the only way that the alarm affects report is by affecting leaving.

Common ancestors

- alarm and smoke are independent: false.
- alarm and smoke are independent given fire: true.
- Intuitively, fire can explain alarm and smoke; learning one can affect the other by changing your belief in fire.

Common descendants

- tampering and fire are independent: true.
- tampering and fire are independent given alarm: false.
- Intuitively, tampering can explain away fire

Belief Network Inference

- Our goal: compute probabilities of variables in a belief network
- Two cases:
(1) the unconditional (prior) distribution over one or more variables
(2) the posterior distribution over one or more variables, conditioned on one or more observed variables
- To address both cases, we only need a computational solution to case 1
- Our method: exploiting the structure of the network to efficiently eliminate (sum out) the non-observed, non-query variables one at a time.

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- denotes a distribution over the given tuple of variables in some (unspecified) context
- Write factor f on variables X_{1}, \ldots, X_{j} as $f\left(X_{1}, \ldots, X_{j}\right)$
- We defined three operations on factors:
(1) Assigning one or more variables
- $f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)$ is a factor on X_{2}, \ldots, X_{j}, also written as $f\left(X_{1}, \ldots, X_{j}\right) X_{1}=v_{1}$
(2) Summing out variables
- $\left(\sum_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right)=$
$f\left(X_{1}=v_{1}, \ldots, X_{j}\right)+\cdots+f\left(X_{1}=v_{k}, \ldots, X_{j}\right)$
(3) Multiplying factors
- $\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})=f_{1}(\bar{X}, \bar{Y}) f_{2}(\bar{Y}, \bar{Z})$

Lecture Overview

(1) Recap
(2) Variable Elimination
(3) Variable Elimination Example

Probability of a conjunction

- Suppose the variables of the belief network are X_{1}, \ldots, X_{n}.
- What we want to compute: the factor
$P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$
- We can compute $P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$ by summing out the variables ${ }^{1} Z_{1}, \ldots, Z_{k}=\left\{X_{1}, \ldots, X_{n}\right\} \backslash\left\{Z, Y_{1}, \ldots, Y_{j}\right\}$.
- We sum out these variables one at a time
- the order in which we do this is called our elimination ordering.

$$
\begin{aligned}
& P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} P\left(X_{1}, \ldots, X_{n}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} .
\end{aligned}
$$

[^0]
Probability of a conjunction

- What we know: the factors $P\left(X_{i} \mid p X_{i}\right)$.
- Using the chain rule and the definition of a belief network, we can write $P\left(X_{1}, \ldots, X_{n}\right)$ as $\prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)$. Thus:

$$
\begin{aligned}
& P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} P\left(X_{1}, \ldots, X_{n}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}}
\end{aligned}
$$

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression $a b+a c+a d+a e h+a f h+a g h$. How can this expression be evaluated more efficiently?

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression $a b+a c+a d+a e h+a f h+a g h$. How can this expression be evaluated more efficiently?
- factor out the a and then the h giving

$$
a(b+c+d+h(e+f+g))
$$

- this takes only 7 multiplications or additions

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression $a b+a c+a d+a e h+a f h+a g h$. How can this expression be evaluated more efficiently?
- factor out the a and then the h giving

$$
a(b+c+d+h(e+f+g))
$$

- this takes only 7 multiplications or additions
- How can we compute $\sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)$ efficiently?

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression $a b+a c+a d+a e h+a f h+a g h$. How can this expression be evaluated more efficiently?
- factor out the a and then the h giving

$$
a(b+c+d+h(e+f+g))
$$

- this takes only 7 multiplications or additions
- How can we compute $\sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)$ efficiently?
- Factor out those terms that don't involve Z_{1} :
$\left(\prod_{i \mid Z_{1} \notin\left\{X_{i}\right\} \cup p X_{i}} P\left(X_{i} \mid p X_{i}\right)\right)\left(\sum_{Z_{1}} \prod_{i \mid Z_{1} \in\left\{X_{i}\right\} \cup p X_{i}} P\left(X_{i} \mid p X_{i}\right)\right)$
(terms that do not involve Z_{i})
(terms that involve Z_{i})

Summing out a variable efficiently

To sum out a variable Z_{j} from a product f_{1}, \ldots, f_{k} of factors:

- Partition the factors into
- those that don't contain Z_{j}, say f_{1}, \ldots, f_{i},
- those that contain Z_{j}, say f_{i+1}, \ldots, f_{k}

We know:

$$
\sum_{Z_{j}} f_{1} \times \cdots \times f_{k}=\left(f_{1} \times \cdots \times f_{i}\right)\left(\sum_{Z_{j}} f_{i+1} \times \cdots \times f_{k}\right) .
$$

- $\left(\sum_{Z_{j}} f_{i+1} \times \cdots \times f_{k}\right)$ is a new factor; let's call it f^{\prime}.
- Now we have:

$$
\sum_{Z_{j}} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f^{\prime}
$$

- Store f^{\prime} explicitly, and discard f_{i+1}, \ldots, f_{k}. Now we've summed out Z_{j}.

Variable elimination algorithm

To compute $P\left(Q \mid Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}\right)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- For each of the other variables $Z_{i} \in\left\{Z_{1}, \ldots, Z_{k}\right\}$, sum out Z_{i}
- Multiply the remaining factors.
- Normalize by dividing the resulting factor $f(Q)$ by $\sum_{Q} f(Q)$.

Lecture Overview

(1) Recap

(2) Variable Elimination

(3) Variable Elimination Example

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A, B, C, D, E, F, G, H, I)$
- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(D \mid B, C)$.
$P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(D \mid B, C)$. $P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate $A: P(G, H)=\sum_{B, C, D, E, F, I} f_{1}(B) \cdot P(C) \cdot P(D \mid B, C)$. $P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{B, C, D, E, F, I} f_{1}(B) \cdot P(C) \cdot P(D \mid B, C) \cdot P(E \mid C) \cdot P(F \mid D)$. $P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate $C: P(G, H)=$

$$
\sum_{B, D, E, F, I} f_{1}(B) \cdot f_{2}(B, D, E) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=$
$\sum_{B, D, E, F, I} f_{1}(B) \cdot f_{2}(B, D, E) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate E :

$$
P(G, H)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot P(H \mid G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot P(H \mid G) \cdot P(I \mid G)$
- Observe $H=h_{1}$:

$$
P\left(G, H=h_{1}\right)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot P(I \mid G)$
- Eliminate I :

$$
P\left(G, H=h_{1}\right)=\sum_{B, D, F} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{B, D, F} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate B :

$$
P\left(G, H=h_{1}\right)=\sum_{D, F} f_{6}(D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{D, F} f_{6}(D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate $D: P\left(G, H=h_{1}\right)=\sum_{F} f_{7}(F, G) \cdot f_{4}(G) \cdot f_{5}(G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{F} f_{7}(F, G) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate $F: P\left(G, H=h_{1}\right)=f_{8}(G) \cdot f_{4}(G) \cdot f_{5}(G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$
- $f_{8}(G):=\sum_{f \in \operatorname{dom}(F)} f_{7}(F=f, G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=f_{8}(G) \cdot f_{4}(G) \cdot f_{5}(G)$
- Normalize: $P\left(G \mid H=h_{1}\right)=\frac{P\left(G, H=h_{1}\right)}{\sum_{g \in \operatorname{dom}(G)} P\left(G, H=h_{1}\right)}$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$
- $f_{8}(G):=\sum_{f \in \operatorname{dom}(F)} f_{7}(F=f, G)$

[^0]: ${ }^{1}$ Recall: Z_{i} and Y_{i} are alternate names for the variables from the set X, used to make indexing easier.

