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Optimal Efficiency of A∗

In fact, we can prove something even stronger about A∗: in a
sense (given the particular heuristic that is available) no
search algorithm could do better!

Optimal Efficiency: Among all optimal algorithms that start
from the same start node and use the same heuristic h, A∗

expands the minimal number of paths.

problem: A∗ could be unlucky about how it breaks ties.
So let’s define optimal efficiency as expanding the minimal
number of paths p for which f(p) 6= f∗, where f∗ is the cost
of the shortest path.
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Why is A∗ optimally efficient?

Theorem

A∗ is optimally efficient.

Let f∗ be the cost of the shortest path to a goal. Consider any
algorithm A′ which has the same start node as A∗, uses the same
heuristic and fails to expand some path p′ expanded by A∗ for which
cost(p′) + h(p′) < f∗. Assume that A’ is optimal.
Consider a different search problem which is identical to the original
and on which h returns the same estimate for each path, except that
p′ has a child path p′′ which is a goal node, and the true cost of the
path to p′′ is f(p′).

that is, the edge from p′ to p′′ has a cost of h(p′): the heuristic is
exactly right about the cost of getting from p′ to a goal.

A′ would behave identically on this new problem.

The only difference between the new problem and the original problem
is beyond path p′, which A′ does not expand.

Cost of the path to p′′ is lower than cost of the path found by A′.
This violates our assumption that A′ is optimal.
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Branch-and-Bound Search

A search strategy often not covered in AI, but widely used in
practice

Uses a heuristic function: like A∗, can avoid expanding some
unnecessary paths

Depth-first: modest memory demands

in fact, some people see “branch and bound” as a broad family
that includes A∗

these people would use the term “depth-first branch and
bound”
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Branch-and-Bound Search Algorithm

Follow exactly the same search path as depth-first search

treat the frontier as a stack: expand the most-recently added
path first
the order in which neighbors are expanded can be governed by
some arbitrary node-ordering heuristic

Keep track of a lower bound and upper bound on solution
cost at each path

lower bound: LB(p) = cost(p) + h(p)
upper bound: UB = cost(p′), where p′ is the best solution
found so far.

if no solution has been found yet, set the upper bound to ∞.

When a path p is selected for expansion:
if LB(p) ≥ UB, remove p from frontier without expanding it

this is called “pruning the search tree” (really!)

else expand p, adding all of its neighbours to the frontier
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Branch-and-Bound Analysis

Completeness: no, for the same reasons that DFS isn’t
complete

however, for many problems of interest there are no infinite
paths and no cycles
hence, for many problems B&B is complete

Time complexity: O(bm)
Space complexity: O(bm)

Branch & Bound has the same space complexity as DFS
this is a big improvement over A∗!

Optimality: yes.
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Other A∗ Enhancements

The main problem with A∗ is that it uses exponential space.
Branch and bound was one way around this problem. Are there
others?

Iterative deepening

Memory-bounded A∗
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Iterative Deepening

B & B can still get stuck in cycles

Search depth-first, but to a fixed depth

if you don’t find a solution, increase the depth tolerance and
try again
of course, depth is measured in f value

Counter-intuitively, the asymptotic complexity is not changed,
even though we visit paths multiple times
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Memory-bounded A∗

Iterative deepening and B & B use a tiny amount of memory

what if we’ve got more memory to use?

keep as much of the fringe in memory as we can

if we have to delete something:

delete the oldest paths
“back them up” to a common ancestor
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Non-heuristic pruning

What can we prune besides nodes that are ruled out by our
heuristic?

Cycles

Multiple paths to the same node
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Cycle Checking

�

s

You can prune a path that ends in a node already on the
path. This pruning cannot remove an optimal solution.

Using depth-first methods, with the graph explicitly stored,
this can be done in constant time.

For other methods, the cost is linear in path length.
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Multiple-Path Pruning

�

s

You can prune a path to node n that you have already found
a path to.

Multiple-path pruning subsumes a cycle check.

This entails storing all nodes you have found paths to.
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?

You can remove all paths from the frontier that use the longer
path.

You can change the initial segment of the paths on the
frontier to use the shorter path.

You can ensure this doesn’t happen. You make sure that the
shortest path to a node is found first.

Heuristic function h satisfies the monotone restriction if
|h(m)− h(n)| ≤ d(m, n) for every arc 〈m, n〉.
If h satisfies the monotone restriction, A∗ with multiple path
pruning always finds the shortest path to every node

otherwise, we have this guarantee only for goals

Search: Advanced Topics and Conclusion CPSC 322 Lecture 9, Slide 17



Recap Branch & Bound A∗ Tricks Other Pruning Backwards Search Dynamic Programming

Lecture Overview

1 Recap

2 Branch & Bound

3 A∗ Tricks

4 Other Pruning

5 Backwards Search

6 Dynamic Programming

Search: Advanced Topics and Conclusion CPSC 322 Lecture 9, Slide 18



Recap Branch & Bound A∗ Tricks Other Pruning Backwards Search Dynamic Programming

Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes.

Of course, this presumes an explicit goal node, not a goal test.
Also, when the graph is dynamically constructed, it can
sometimes be impossible to construct the backwards graph

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.
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Bidirectional Search

You can search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 � bk. This can result in an exponential
saving in time and space.

The main problem is making sure the frontiers meet.
This is often used with one breadth-first method that builds a
set of locations that can lead to the goal. In the other
direction another method can be used to find a path to these
interesting locations.
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Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the
actual distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

dist(n) =
{

0 if is goal(n),
min〈n,m〉∈A(|〈n, m〉|+ dist(m)) otherwise.

This can be used locally to determine what to do.
There are two main problems:

You need enough space to store the graph.

The dist function needs to be recomputed for each goal.

Complexity: polynomial in the size of the graph.
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