Recap	Heuristic Search	Best-First Search	A^* Search	Optimality of A^*

Heuristic Search and A*

CPSC 322 Lecture 7

September 19, 2007 Textbook §3.5

Heuristic Search and A*

CPSC 322 Lecture 7, Slide 1

- < ∃ >

-∢ ≣ ▶

Recap	Heuristic Search	Best-First Search	A^* Search	Optimality of A^*
Lecture	Overview			

3 Best-First Search

5 Optimality of A^*

CPSC 322 Lecture 7, Slide 2

3

・ロト ・回ト ・ヨト ・ヨト

Heuristic Search and A*

- Breadth-first search treats the frontier as a queue
 - It always selects one of the first elements added to the frontier.

- Complete even when the graph has cycles or is infinite
- Time complexity is $O(b^m)$
- Space complexity is $O(b^m)$

- Sometimes there are costs associated with arcs.
 - The cost of a path is the sum of the costs of its arcs.
- In this setting we often don't just want to find just any solution
 - Instead, we usually want to find the solution that minimizes cost
- We call a search algorithm which always finds such a solution optimal
- Lowest-Cost-First Search: expand paths from the frontier in order of their costs.

4 B M 4 B M

Recap	Heuristic Search	Best-First Search	A^* Search	Optimality of A^*
Lecture	Overview			

3 Best-First Search

5 Optimality of A^*

CPSC 322 Lecture 7, Slide 5

(1日) (日) (日)

 Recap
 Heuristic Search
 Best-First Search
 A* Search
 Optimality of A*

 Past knowledge and search
 East character
 Optimality of A*
 Optimality of A*

- Some people believe that they are good at solving hard problems without search
 - However, consider e.g., public key encryption codes (or combination locks): the search problem is clear, but people can't solve it
 - When people do perform well on hard problems, it is usually because they have useful knowledge about the structure of the problem domain
- Computers can also improve their performance when given this sort of knowledge
 - in search, they can estimate the distance from a given node to the goal through a search heuristic
 - in this way, they can take the goal into account when selecting path

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

Recap	Heuristic Search	Best-First Search	A^* Search	Optimality of A^*
Heuristi	c Search			

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest path from node n to a goal node.

- h can be extended to paths: $h(\langle n_0,\ldots,n_k\rangle)=h(n_k)$
- h(n) uses only readily obtainable information (that is easy to compute) about a node.

Recap	Heuristic Search	Best-First Search	A* Search	Optimality of A^*
Heuristi	c Search			

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest path from node n to a goal node.

- h can be extended to paths: $h(\langle n_0,\ldots,n_k\rangle)=h(n_k)$
- h(n) uses only readily obtainable information (that is easy to compute) about a node.

Definition (admissible heuristic)

A search heuristic h(n) is admissible if it is never an overestimate of the cost from n to a goal.

- there is never a path from n to a goal that has path length less than $h(n). \label{eq:hard_state}$
- another way of saying this: h(n) is a lower bound on the cost

of getting from n to the nearest goal.

- If the nodes are points on a Euclidean plane and the cost is the distance, we can use the straight-line distance from n to the closest goal as the value of h(n).
 - this makes sense if there are obstacles, or for other reasons not all adjacent nodes share an arc

- If the nodes are points on a Euclidean plane and the cost is the distance, we can use the straight-line distance from n to the closest goal as the value of h(n).
 - this makes sense if there are obstacles, or for other reasons not all adjacent nodes share an arc
- Likewise, if nodes are cells in a grid and the cost is the number of steps, we can use "Manhattan distance"
 - $\bullet\,$ this is also known as the L_1 distance; Euclidean distance is L_2 distance

< 토 ► < 토 ►

Example Heuristic Functions

- If the nodes are points on a Euclidean plane and the cost is the distance, we can use the straight-line distance from n to the closest goal as the value of h(n).
 - this makes sense if there are obstacles, or for other reasons not all adjacent nodes share an arc
- Likewise, if nodes are cells in a grid and the cost is the number of steps, we can use "Manhattan distance"
 - $\bullet\,$ this is also known as the L_1 distance; Euclidean distance is L_2 distance
- In the 8-puzzle, we can use the number of moves between each tile's current position and its position in the solution

個 と く ヨ と く ヨ と …

 Recap
 Heuristic Search
 Best-First Search
 A^* Search
 Optimality of A^*

How to Construct a Heuristic

- Overall, a cost-minimizing search problem is a constrained optimization problem
 - e.g., find a path from A to B which minimizes distance traveled, subject to the constraint that the robot can't move through walls

3

白 ト く ヨ ト く ヨ ト

Recap

How to Construct a Heuristic

- Overall, a cost-minimizing search problem is a constrained optimization problem
 - e.g., find a path from A to B which minimizes distance traveled, subject to the constraint that the robot can't move through walls
- A relaxed version of the problem is a version of the problem where one or more constraints have been dropped
 - e.g., find a path from A to B which minimizes distance traveled, *allowing* the agent to move through walls
 - A relaxed version of a minimization problem will always return a value which is weakly smaller than the original value: thus, it's an admissible heuristic

3

白 と く ヨ と く ヨ と …

How to Construct a Heuristic

- Overall, a cost-minimizing search problem is a constrained optimization problem
 - e.g., find a path from A to B which minimizes distance traveled, subject to the constraint that the robot can't move through walls
- A relaxed version of the problem is a version of the problem where one or more constraints have been dropped
 - e.g., find a path from A to B which minimizes distance traveled, *allowing* the agent to move through walls
 - A relaxed version of a minimization problem will always return a value which is weakly smaller than the original value: thus, it's an admissible heuristic
- It's usually possible to identify constraints which, when dropped, make the problem extremely easy to solve
 - this is important because heuristics are not useful if they're as hard to solve as the original problem!

2

御 と く き と く き と

How to Construct a Heuristic

- Overall, a cost-minimizing search problem is a constrained optimization problem
 - e.g., find a path from A to B which minimizes distance traveled, subject to the constraint that the robot can't move through walls
- A relaxed version of the problem is a version of the problem where one or more constraints have been dropped
 - e.g., find a path from A to B which minimizes distance traveled, *allowing* the agent to move through walls
 - A relaxed version of a minimization problem will always return a value which is weakly smaller than the original value: thus, it's an admissible heuristic
- It's usually possible to identify constraints which, when dropped, make the problem extremely easy to solve
 - this is important because heuristics are not useful if they're as hard to solve as the original problem!
- Another trick for constructing heuristics: if h₁(n) is an admissible heuristic, and h₂(n) is also an admissible heuristic, then max(h₁(n), h₂(n)) is also admissible.

Recap	Heuristic Search	Best-First Search	A^* Search	Optimality of A^*
Lecture	Overview			

3 Best-First Search

5 Optimality of A^*

Heuristic Search and A*

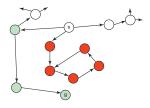
CPSC 322 Lecture 7, Slide 10

æ

물 제 문 제

- Idea: select the path whose end is closest to a goal according to the heuristic function.
- Best-First search selects a path on the frontier with minimal *h*-value.
- It treats the frontier as a priority queue ordered by h.
- This is a greedy approach: it always takes the path which appears locally best

• Complete: no: a low heuristic value can mean that a cycle gets followed forever.



- Time complexity is $O(b^m)$
- Space complexity is $O(b^m)$
- Optimal: no (why not?)

Recap	Heuristic Search	Best-First Search	A [*] Search	Optimality of A^*
Lecture	Overview			

3 Best-First Search

4 A^* Search

5 Optimality of A^*

Heuristic Search and A*

CPSC 322 Lecture 7, Slide 13

æ

(1日) (日) (日)

Recap	Heuristic Search	Best-First Search	A^* Search	Optimality of A^*
A^* Searc	ch			

- $\bullet~A^*$ search uses both path costs and heuristic values
 - cost(p) is the cost of the path p.
 - h(p) estimates the cost from the end of p to a goal.

Recap	Heuristic Search	Best-First Search	A^* Search	Optimality of A^*
A^* Searc	ch			

- A^* search uses both path costs and heuristic values
 - cost(p) is the cost of the path p.
 - h(p) estimates the cost from the end of p to a goal.
- Let f(p) = cost(p) + h(p).
 - f(p) estimates the total path cost of going from a start node to a goal via p.

$$\underbrace{\underbrace{start \quad \stackrel{\mathsf{path}}{\longrightarrow} n}_{cost(p)} \underbrace{n \quad \stackrel{\mathsf{estimate}}{\longrightarrow} goal}_{f(p)}$$

Recap	Heuristic Search	Best-First Search	A^* Search	Optimality of A^*
A^* Searc	ch			

- A^* search uses both path costs and heuristic values
 - cost(p) is the cost of the path p.
 - h(p) estimates the cost from the end of p to a goal.
- Let f(p) = cost(p) + h(p).
 - f(p) estimates the total path cost of going from a start node to a goal via p.

$$\underbrace{\underbrace{start \xrightarrow{\text{path } p}}_{cost(p)} n \xrightarrow{\text{estimate } goal}}_{f(p)}$$

- A^* treats the frontier as a priority queue ordered by f(p).
 - It always selects the node on the frontier with the lowest estimated total distance.
 - It's a mix of lowest-cost-first and best-first search.

Let's assume that arc costs are strictly positive.

- Completeness: yes.
- Time complexity: $O(b^m)$
 - the heuristic could be completely uninformative and the edge costs could all be the same, meaning that A^* does the same thing as BFS
- Space complexity: $O(b^m)$
 - like BFS, A^{\ast} maintains a frontier which grows with the size of the tree
- Optimality: yes.

E 🖌 🖌 E 🕨

Recap	Heuristic Search	Best-First Search	A^* Search	Optimality of A^*
Lecture	Overview			

3 Best-First Search

4 A* Search

Heuristic Search and A*

CPSC 322 Lecture 7, Slide 16

3

< ∃⇒

< 🗇 🕨 <

If A^\ast returns a solution, that solution is guaranteed to be optimal, as long as

- the branching factor is finite
- arc costs are strictly positive
- h(n) is an underestimate of the length of the shortest path from n to a goal node, and is non-negative

¹Some literature, and the textbook, uses the word "admissibility" here. Heuristic Search and A^{*} CPSC 322 Lecture 7, Slide 17

Theorem

If A^* selects a path p, p is the shortest (i.e., lowest-cost) path.

- \bullet Assume for contradiction that some other path p^\prime is actually the shortest path to a goal
- Consider the moment just before p is chosen from the frontier. Some part of path p' will also be on the frontier; let's call this partial path p''.
- Because p was expanded before p'', $f(p) \leq f(p'')$.
- Because p is a goal, h(p) = 0. Thus $cost(p) \le cost(p'') + h(p'')$.
- Because h is admissible, $cost(p'')+h(p'')\leq cost(p')$ for any path p' to a goal that extends p''
- Thus $cost(p) \le cost(p')$ for any other path p' to a goal. This contradicts our assumption that p' is the shortest path.