Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4

Textbook §5.2

Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4, Slide 1

2

個 と く ヨ と く ヨ と …

Lecture Overview

2 Soundness of Bottom-Up Proofs

3 Completeness of Bottom-Up Proofs

Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4, Slide 2

æ

(4回) (1日) (日)

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.

Definition (soundness)

A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.

Definition (completeness)

A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.

(《圖》 《문》 《문》 - 문

Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of modus ponens: If " $h \leftarrow b_1 \land \ldots \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are forward chaining on this clause. (This rule also covers the case when m = 0.)

医下颌 医下颌

Bottom-up proof procedure

$KB \vdash g$ if $g \subseteq C$ at the end of this procedure:

 $C := \{\};$ repeat
select clause " $h \leftarrow b_1 \land \ldots \land b_m$ " in KB such that $b_i \in C$ for all i, and $h \notin C$; $C := C \cup \{h\}$ until no more clauses can be selected.

$$a \leftarrow b \land c.$$

$$a \leftarrow e \land f.$$

$$b \leftarrow f \land k.$$

$$c \leftarrow e.$$

$$d \leftarrow k.$$

$$e.$$

$$f \leftarrow j \land e.$$

$$f \leftarrow c.$$

$$j \leftarrow c.$$

Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4, Slide 6

æ

・ロト ・回ト ・ヨト ・ヨト

{}

$$a \leftarrow b \land c.$$

$$a \leftarrow e \land f.$$

$$b \leftarrow f \land k.$$

$$c \leftarrow e.$$

$$d \leftarrow k.$$

$$e.$$

$$f \leftarrow j \land e.$$

$$f \leftarrow c.$$

$$j \leftarrow c.$$

Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4, Slide 6

æ

・ロト ・回ト ・ヨト ・ヨト

$$\begin{array}{l} a \leftarrow b \wedge c. \\ a \leftarrow e \wedge f. \\ b \leftarrow f \wedge k. \\ c \leftarrow e. \\ d \leftarrow k. \\ e. \\ f \leftarrow j \wedge e. \\ f \leftarrow c. \\ j \leftarrow c. \end{array}$$

Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4, Slide 6

2

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

$$\begin{array}{l} a \leftarrow b \wedge c. \\ a \leftarrow e \wedge f. \\ b \leftarrow f \wedge k. \\ c \leftarrow e. \\ d \leftarrow k. \\ e. \\ f \leftarrow j \wedge e. \\ f \leftarrow c. \\ j \leftarrow c. \end{array}$$

Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4, Slide 6

æ

$a \leftarrow b \wedge c.$	
$\begin{aligned} a &\leftarrow e \wedge f. \\ b &\leftarrow f \wedge k. \end{aligned}$	{} (a)
$c \leftarrow e.$ $d \leftarrow k.$	$ \{e\} $ $ \{c, e\} $
$e.$ $f \leftarrow j \wedge e.$	$\{c, c, f\}$
$f \leftarrow c.$ $i \leftarrow c$	

Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4, Slide 6

Ξ.

$a \leftarrow b \wedge c.$	
$a \leftarrow e \wedge f.$	U
$b \leftarrow f \wedge k.$	را را
$c \leftarrow e$.	رم) العالم
$d \leftarrow k$.	$\{c, e\}$
<i>e</i> .	$\{c, e, j\}$
$f \leftarrow j \wedge e.$	$\{c, e, f, f\}$
$f \leftarrow c.$	
$j \leftarrow c$.	

Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4, Slide 6

æ

◆□ > ◆□ > ◆臣 > ◆臣 > ○

$a \leftarrow b \wedge c.$	
$a \leftarrow e \wedge f.$	Û
$b \leftarrow f \wedge k.$	{} [2]
$c \leftarrow e$.	$\{e\}$
$d \leftarrow k.$	$\{c, e\}$
<i>e</i> .	$\{c, e, f\}$
$f \leftarrow j \wedge e.$	$\{c, e, f, j\}$
$f \leftarrow c.$	$\{u, c, e, f, f\}$
$j \leftarrow c$.	

æ

・ロン ・四 と ・ ヨ と ・ モ と

Lecture Overview

2 Soundness of Bottom-Up Proofs

3 Completeness of Bottom-Up Proofs

Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4, Slide 7

æ

Soundness of bottom-up proof procedure

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Let h be the first atom added to C that's not true in every model of KB.
- Suppose h isn't *true* in model I of KB.
- There must be a clause in *KB* of form

$$h \leftarrow b_1 \land \ldots \land b_m$$

Each b_i is true in I. h is false in I. So this clause is false in I.

• Therefore *I* isn't a model of *KB*. Contradiction: thus no such *g* exists.

(문) (문) (

Lecture Overview

2 Soundness of Bottom-Up Proofs

3 Completeness of Bottom-Up Proofs

Logic: Soundness and Completeness of Bottom-Up Proofs

CPSC 322 - Logic 4, Slide 9

æ

Minimal Model

We can use proof procedure to find a model of KB.

- First, observe that the *C* generated at the end of the bottom-up algorithm is a fixed point.
 - further applications of our rule of derivation will not change C.

▲ 理 ▶ | ▲ 理 ▶ …

Minimal Model

We can use proof procedure to find a model of KB.

- First, observe that the C generated at the end of the bottom-up algorithm is a fixed point.
 - further applications of our rule of derivation will not change C.

Definition (minimal model)

Let the minimal model I be the interpretation in which every element of the fixed point C is true and every other atom is false.

< ≞ > < ≞ > ...

Minimal Model

We can use proof procedure to find a model of KB.

- First, observe that the C generated at the end of the bottom-up algorithm is a fixed point.
 - further applications of our rule of derivation will not change C.

Definition (minimal model)

Let the minimal model I be the interpretation in which every element of the fixed point C is true and every other atom is false.

Claim: I is a model of KB. Proof:

- Assume that I is not a model of KB. Then there must exist some clause h ← b₁ ∧ ... ∧ b_m in KB (having zero or more b_i's) which is false in I.
- This can only occur when h is false and each b_i is true in I.
- If each b_i belonged to C, we would have added h to C as well.
- Since C is a fixed point, no such I can exist.

Completeness

If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.

<回▶ < 回▶ < 回▶ = 回