Quiz	Recap	Using Logic to Model the	World	Proofs	Bottom-Up Proofs
	Proposit	ional Logic:	Bottom-	Up Proof	s
				op	
		CPSC 322 -	- Logic 3		
		CI 5C 522	Logic J		
		Textbool	k §5.2		

Propositional Logic: Bottom-Up Proofs

CPSC 322 – Logic 3, Slide 1

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ @ >

3 Using Logic to Model the World

5 Bottom-Up Proofs

Propositional Logic: Bottom-Up Proofs

æ

Quiz	Recap	Using Logic to Model the World	Proofs	Bottom-Up Proofs
Quiz				

 8 points Without using the words "model" or "interpretation", explain what it means to say that KB ⊨ g.

- Grading scheme:
 - approximately correct: 8 points
 - some good ideas: 4 points
 - incorrect: 0 points

3 Using Logic to Model the World

5 Bottom-Up Proofs

Propositional Logic: Bottom-Up Proofs

æ

Quiz

Recap

Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses and knowledge bases:

Definition (truth values of statements)

- A body $b_1 \wedge b_2$ is true in I if and only if b_1 is true in I and b_2 is true in I.
- A rule h ← b is false in I if and only if b is true in I and h is false in I.
- A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

Models and Logical Consequence

Definition (model)

A model of a set of clauses is an interpretation in which all the clauses are *true*.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is *true* in every model of KB.

- we also say that g logically follows from KB, or that KB entails g.
- In other words, $KB \models g$ if there is no interpretation in which KB is *true* and g is *false*.

イロン イ部ン イヨン イヨン 三日

Quiz	Recap	Using Logic to Model the World	Proofs	Bottom-Up Proofs
Locture		N A /		

3 Using Logic to Model the World

4 Proofs

5 Bottom-Up Proofs

Propositional Logic: Bottom-Up Proofs

3

・ 回 と ・ ヨ と ・ ヨ と

User's view of Semantics

- Choose a task domain: intended interpretation.
- Associate an atom with each proposition you want to represent.
- It the system clauses that are true in the intended interpretation: axiomatizing the domain.
- Ask questions about the intended interpretation.
- **(**) If $KB \models g$, then g must be true in the intended interpretation.
- O The user can interpret the answer using their intended interpretation of the symbols.

3

白 ト イヨ ト イヨ ト

- The computer doesn't have access to the intended interpretation.
 - All it knows is the knowledge base.
 - The computer can determine if a formula is a logical consequence of KB.
 - If $KB \models g$ then g must be true in the intended interpretation.
 - If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.

★ E ► < E ►</p>

Electrical Environment

Propositional Logic: Bottom-Up Proofs

æ

Representing the Electrical Environment

$light l_1$.	$live_l_1 \leftarrow live_w_0$
$light l_2$	$live_w_0 \leftarrow live_w_1 \land up_s_2.$
down s1	$live_w_0 \leftarrow live_w_2 \wedge down_s_2.$
	$live_w_1, \leftarrow live_w_3 \land up_s_1.$
up_32.	$live_w_2 \leftarrow live_w_3 \wedge down_s_1.$
up_{-s_3}	$live_l_2 \leftarrow live_w_4.$
Ok_{-l_1}	$live_w_4 \leftarrow live_w_3 \land up_s_3.$
$O\kappa_{-l_2}$	$live_p_1 \leftarrow live_w_3.$
$o\kappa_{-co_1}$.	$live_w_3 \leftarrow live_w_5 \wedge ok_cb_1.$
$O\kappa_{-CO_2}$.	$live_p_2 \leftarrow live_w_6.$
live_outside.	live $w_6 \leftarrow live w_5 \land ok cb_2$.
	$live_w_5 \leftarrow live_outside.$

æ

イロン イヨン イヨン イヨン

Role of semantics

In user's mind:

- *l2_broken*: light *l*2 is broken
- $sw3_up$: switch is up
- *power*: there is power in the building
- *unlit_l*2: light *l*2 isn't lit
- *lit_l*1: light *l*1 is lit

In Computer:

Conclusion: $l2_broken$

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbols using their meaning

3

・回・ ・ヨ・ ・ヨ・

Osing Logic to Model the World

Bottom-Up Proofs

Propositional Logic: Bottom-Up Proofs

æ

・ 回 と ・ ヨ と ・ ヨ と

Quiz	Recap	Using Logic to Model the World	Proofs	Bottom-Up Proofs
Proofs				

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.

Definition (soundness)

A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.

Definition (completeness)

A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.

伺 とう ヨン うちょう

3 Using Logic to Model the World

4 Proofs

Propositional Logic: Bottom-Up Proofs

æ

(4回) (1日) (日)

One rule of derivation, a generalized form of modus ponens: If " $h \leftarrow b_1 \land \ldots \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are forward chaining on this clause. (This rule also covers the case when m = 0.)

Bottom-up proof procedure

$KB \vdash g$ if $g \subseteq C$ at the end of this procedure:

 $C := \{\};$ repeat
select clause " $h \leftarrow b_1 \land \ldots \land b_m$ " in KB such that $b_i \in C$ for all i, and $h \notin C$; $C := C \cup \{h\}$ until no more clauses can be selected.