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Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

V ∗(s), where s is a state, is the expected value of following
the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =
∑
s′

P (s′|a, s)
(
r(s, a, s′) + γV ∗(s′)

)
V ∗(s) = max

a
Q∗(s, a)

π∗(s) = arg max
a

Q∗(s, a)
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Value Iteration

Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value function.

Set V0 arbitrarily.
e.g., zeros

Compute Qi+1 and Vi+1 from Vi:

Qi+1(s, a) =
∑
s′

P (s′|a, s)
(
r(s, a, s′) + γVi(s′)

)
Vi+1(s) = max

a
Qi+1(s, a)

If we intersect these equations at Qi+1, we get an update
equation for V :

Vi+1(s) = max
a

∑
s′

P (s′|a, s)
(
r(s, a, s′) + γVi(s′)

)
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Pseudocode for Value Iteration
432 CHAPTER 12. PLANNING UNDER UNCERTAINTY

procedure value_iteration(P, r, θ)

inputs:
P is state transition function specifying P(s′|a, s)
r is a reward function R(s, a, s′)
θ a threshold θ > 0

returns:
π [s] approximately optimal policy
V [s] value function

data structures:
Vk[s] a sequence of value functions

begin
for k = 1 :∞

for each state s
Vk[s] = maxa

∑
s′ P(s′|a, s)(R(s, a, s′)+ γ Vk−1[s′])

if ∀s |Vk(s)− Vk−1(s)| < θ

for each state s
π(s) = arg maxa

∑
s′ P(s′|a, s)(R(s, a, s′)+ γ Vk−1[s′])

return π, Vk

end

Figure 12.13: Value Iteration for Markov Decision Processes, storing V

Value Iteration

Value iteration is a method of computing the optimal policy and the optimal value
of a Markov decision process.

In value iteration, you start at the “end” and then work backwards refining an
estimate of either Q∗ or V∗. There is really no end, so you start anywhere. You
can recursively define the k-stages to go value function, Vk and the k-stages to go Q-
function, Qk . You start with an arbitrary function V0 and use the following equations

Q∗k+1(s, a) =
∑

s′
P(s′|a, s)(R(s, a, s′)+ γ V∗k (s′)) for k ≥ 0

V∗k (s) = max
a

Qk(s, a) for k > 0

You can either save the V array or the Q array. Saving the V array results in less
storage, but it is more difficult to determine the optimal action, and one more iteration
is needed to determine which action results in the greatest value.

Figure 12.13 shows the value iteration algorithm when the V array is stored. This
procedure converges no matter what V0 is. A value function that approximates V∗

Computational Intelligence, 2nd Edition, draft of March 27, 2006
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Value Iteration Example: Gridworld

See
http://www.cs.ubc.ca/spider/poole/demos/mdp/vi.html.
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Asynchronous Value Iteration

You don’t need to sweep through all the states, but can
update the value functions for each state individually.

This converges to the optimal value functions, if each state
and action is visited infinitely often in the limit.
Typically this is done by storing Q[s, a]
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Pseudocode for Asynchronous Value Iteration
12.5. DECISION PROCESSES 433

procedure asynchronous_value_iteration(P, r)
inputs:

P is state transition function specifying P(s′|a, s)
r is a reward function R(s, a, s′)

returns:
π approximately optimal policy
Q value function

data structures:
real array Q[s, a]
action array π [s]

begin
repeat

select a state s
select an action a

Q[s, a] =
∑

s′ P(s′|a, s)(R(s, a, s′)+ γ maxa′ Q[s′, a′])
until some stopping criteria is true
for each state s

π [s] = arg maxa Q[s, a]
return π, Q

end

Figure 12.14: Asynchronous Value Iteration for Markov Decision Processes

converges quicker than one that does not. The basis for many abstraction techniques
for MDPs is to use some heuristic method to approximate V∗, and to use this as a seed
for value iteration.

A common refinement of this algorithm is asynchronous value iteration. This
converges faster and uses less space than value iteration and is the basis of some of
the algorithms of reinforcement learning (see Section 15.3 on page 492). The idea
behind asynchronous value iteration is that you don’t need to sweep though the states
to create a new value function, but you can update the states one at a time in any order
and store the values in a single array (the algorithm of Figure 12.13 on the preceding
page has an array for each stage). This algorithm lets you select states in any order,
and does not force you to sweep through the states. You can either store the Q[s, a]
array or the V [s] array. Figure 12.14 shows asynchronous value iteration when the Q
array is stored.

You could also implement asynchronous value iteration storing just the V [s] array.

©Poole, Mackworth and Goebel, 2006
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Q-Learning

This still required us to know the transition probabilities P .

What if we just move around in the state space, never
knowing these probabilities, but just taking actions and
receiving rewards?

We can use Asynchronous Value Iteration as the basis of a
reinforcement learning algorithm

Why is this learning?

It answers the question, “How should an agent behave in an
MDP if it doesn’t know the transition probabilities or the
reward function?”
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Q-Learning

Choose actions:
Choose the action that appears to maximize Q (based on
current estimates) most of the time
Choose a random action the rest of the time
Reduce the chance of taking a random action as time goes on

Update the Q-functions:
Let α be a learning rate, 0 < α < 1
Let γ be the discount factor.
Whenever the agent starts out in state s, takes action a and
ends up in state s′, update Q[s, a] as:

Q[s, a]← (1− α)Q[s, a] + α[R(s, a, s′) + γmax
a

Q[s′, a′]]

Under reasonable conditions, Q-learning converges to the true
Q, even though it never learns transition probabilities.

Why can we get away without them? Because the frequency of
observing each s′ already depends on them.
Thus, we say Q-learning is model-free.
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Q-Learning Example: Gridworld Again

See http://www.cs.ubc.ca/spider/poole/demos/rl/q.html
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