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Markov Decision Processes

Definition (Markov Decision Process)

A Markov Decision Process (MDP) is a 5-tuple 〈S,A, P,R, s0〉,
where each element is defined as follows:

S: a set of states.

A: a set of actions.

P (St+1|St, At): the dynamics.

R(St, At, St+1): the reward. The agent gets a reward at each
time step (rather than just a final reward).

R(s, a, s′) is the reward received when the agent is in state s,
does action a and ends up in state s′.

s0: the initial state.
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Rewards and Values

Suppose the agent receives the sequence of rewards
r1, r2, r3, r4, . . .. What value should be assigned?

total reward:

V =
∞∑
i=1

ri

average reward:

V = lim
n→∞

r1 + · · ·+ rn
n

discounted reward:

V =
∞∑
i=1

γi−1ri

γ is the discount factor, 0 ≤ γ ≤ 1

Decision Theory: Value Iteration CPSC 322 – Decision Theory 4, Slide 4



Recap Value of a Policy Value Iteration

Policies

A stationary policy is a function:

π : S → A

Given a state s, π(s) specifies what action the agent who is
following π will do.

An optimal policy is one with maximum expected value

we’ll focus on the case where value is defined as discounted
reward.

For an MDP with stationary dynamics and rewards with
infinite or indefinite horizon, there is always an optimal
stationary policy in this case.

Note: this means that although the environment is random,
there’s no benefit for the agent to randomize.
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Value of a Policy

Qπ(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following policy π.

V π(s), where s is a state, is the expected value of following
policy π in state s.

Qπ and V π can be defined mutually recursively:

V π(s) = Qπ(s, π(s))

Qπ(s, a) =
∑
s′

P (s′|a, s)
(
r(s, a, s′) + γV π(s′)

)
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Value of the Optimal Policy

Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

V ∗(s), where s is a state, is the expected value of following
the optimal policy in state s.

Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =
∑
s′

P (s′|a, s)
(
r(s, a, s′) + γV ∗(s′)

)
V ∗(s) = max

a
Q∗(s, a)

π∗(s) = arg max
a

Q∗(s, a)
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Value Iteration

Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value function.

Set V0 arbitrarily.
e.g., zeros

Compute Qi+1 and Vi+1 from Vi:

Qi+1(s, a) =
∑
s′

P (s′|a, s)
(
r(s, a, s′) + γVi(s′)

)
Vi+1(s) = max

a
Qi+1(s, a)

If we intersect these equations at Qi+1, we get an update
equation for V :

Vi+1(s) = max
a

∑
s′

P (s′|a, s)
(
r(s, a, s′) + γVi(s′)

)
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Pseudocode for Value Iteration
432 CHAPTER 12. PLANNING UNDER UNCERTAINTY

procedure value_iteration(P, r, θ)

inputs:
P is state transition function specifying P(s′|a, s)
r is a reward function R(s, a, s′)
θ a threshold θ > 0

returns:
π [s] approximately optimal policy
V [s] value function

data structures:
Vk[s] a sequence of value functions

begin
for k = 1 :∞

for each state s
Vk[s] = maxa

∑
s′ P(s′|a, s)(R(s, a, s′)+ γ Vk−1[s′])

if ∀s |Vk(s)− Vk−1(s)| < θ

for each state s
π(s) = arg maxa

∑
s′ P(s′|a, s)(R(s, a, s′)+ γ Vk−1[s′])

return π, Vk

end

Figure 12.13: Value Iteration for Markov Decision Processes, storing V

Value Iteration

Value iteration is a method of computing the optimal policy and the optimal value
of a Markov decision process.

In value iteration, you start at the “end” and then work backwards refining an
estimate of either Q∗ or V∗. There is really no end, so you start anywhere. You
can recursively define the k-stages to go value function, Vk and the k-stages to go Q-
function, Qk . You start with an arbitrary function V0 and use the following equations

Q∗k+1(s, a) =
∑

s′
P(s′|a, s)(R(s, a, s′)+ γ V∗k (s′)) for k ≥ 0

V∗k (s) = max
a

Qk(s, a) for k > 0

You can either save the V array or the Q array. Saving the V array results in less
storage, but it is more difficult to determine the optimal action, and one more iteration
is needed to determine which action results in the greatest value.

Figure 12.13 shows the value iteration algorithm when the V array is stored. This
procedure converges no matter what V0 is. A value function that approximates V∗

Computational Intelligence, 2nd Edition, draft of March 27, 2006
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Value Iteration Example: Gridworld

See
http://www.cs.ubc.ca/spider/poole/demos/mdp/vi.html.
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