Decision Theory: Single Decisions

CPSC 322 - Decision Theory 1

Textbook §12.2

Lecture Overview

(1) Recap
(2) Intro
(3) Decision Problems

4 Single Decisions

Markov chain

- A Markov chain is a special sort of belief network:

- Thus $P\left(S_{t+1} \mid S_{0}, \ldots, S_{t}\right)=P\left(S_{t+1} \mid S_{t}\right)$.
- Often S_{t} represents the state at time t. Intuitively S_{t} conveys all of the information about the history that can affect the future states.
- "The past is independent of the future given the present."

Hidden Markov Model

- A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{t+1} \mid S_{t}\right)$ specifies the dynamics
- $P\left(O_{t} \mid S_{t}\right)$ specifies the sensor model

Lecture Overview

(1) Recap
(2) Intro
(3) Decision Problems

4 Single Decisions

Decisions Under Uncertainty

- In the first part of the course we focused on decision making in domains where the environment was understood with certainty
- Search/CSPs: single decisions
- Planning: sequential decisions
- In uncertain domains, we've so far only considered how to represent and update beliefs
- What if an agent has to make decisions in a domain that involves uncertainty?
- this is likely: one of the main reasons to represent the world probabilistically is to be able to use these beliefs as the basis for making decisions

Decisions Under Uncertainty

- An agent's decision will depend on:
(1) what actions are available
(2) what beliefs the agent has
- note: this replaces "state" from the deterministic setting
(3) the agent's goals
- Differences between the deterministic and probabilistic settings
- we've already seen that it makes sense to represent beliefs differently.
- Today we'll speak about representing actions and goals
- actions will be pretty straightforward: decision variables.
- we'll move from all-or-nothing goals to a richer notion: rating how happy the agent is in different situations.

Lecture Overview

(1) Recap
(2) Intro
(3) Decision Problems
(4) Single Decisions

Representing Actions: Decision Variables

- Decision variables are like random variables whose value an agent gets to set.
- A possible world specifies a value for each random variable and each decision variable.
- For each assignment of values to all decision variables, the measures of the worlds satisfying that assignment sum to 1 .
- The probability of a proposition is undefined unless you condition on the values of all decision variables.

Decision Tree for Delivery Robot

- The robot can choose to wear pads to protect itself or not.
- The robot can choose to go the short way past the stairs or a long way that reduces the chance of an accident.
- There is one random variable indicating whether there is an accident.

Utility

- Utility: a measure of desirability of worlds to an agent.
- Let U be a real-valued function such that $U(\omega)$ represents an agent's degree of preference for world ω.
- Simple goals can still be specified, using a boolean utility function:
- worlds that satisfy the goal have utility 1
- other worlds have utility 0
- Utilities can also be more complicated. For example, in the delivery robot domain, utility might be the sum of:
- some function of the amount of damage to a robot
- how much energy is left
- what goals are achieved
- how much time it has taken.

Expected Utility

What is the utility of an achieving a certain probability distribution over possible worlds?

Expected Utility

What is the utility of an achieving a certain probability distribution over possible worlds?

- The expected value of a function of possible worlds is its average value, weighting possible worlds by their probability.
- Suppose $U(w)$ is the utility of world world w.
- The expected utility is

$$
\mathbb{E}(U)=\sum_{\omega \in \Omega} P(\omega) U(\omega) .
$$

- The conditional expected utility given e is

$$
\mathbb{E}(U \mid e)=\sum_{\omega \models e} P(\omega \mid e) U(\omega) .
$$

Lecture Overview

(4) Single Decisions

Single decisions

- Given a single decision variable, the agent can choose $D=d_{i}$ for any $d_{i} \in \operatorname{dom}(D)$.
- Write expected utility of taking decision $D=d_{i}$ as $\mathbb{E}\left(U \mid D=d_{i}\right)$.
- An optimal single decision is the decision $D=d_{\max }$ whose expected utility is maximal:

$$
d_{\max } \in \underset{d_{i} \in \operatorname{dom}(D)}{\arg \max } \mathbb{E}\left(U \mid D=d_{i}\right)
$$

Single-stage decision networks

Extend belief networks with:

- Decision nodes, that the agent chooses the value for. Domain is the set of possible actions. Drawn as rectangle.
- Utility node, the parents are the variables on which the utility depends. Drawn as a diamond.

This shows explicitly which nodes affect whether there is an accident.

Finding the optimal decision

- Suppose the random variables are X_{1}, \ldots, X_{n}, and utility depends on $X_{i_{1}}, \ldots, X_{i_{k}}$

$$
\begin{aligned}
\mathbb{E}(U \mid D) & =\sum_{X_{1}, \ldots, X_{n}} P\left(X_{1}, \ldots, X_{n} \mid D\right) U\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \\
& =\sum_{X_{1}, \ldots, X_{n}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right) U\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
\end{aligned}
$$

Finding the optimal decision

- Suppose the random variables are X_{1}, \ldots, X_{n}, and utility depends on $X_{i_{1}}, \ldots, X_{i_{k}}$

$$
\begin{aligned}
\mathbb{E}(U \mid D) & =\sum_{X_{1}, \ldots, X_{n}} P\left(X_{1}, \ldots, X_{n} \mid D\right) U\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \\
& =\sum_{X_{1}, \ldots, X_{n}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right) U\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
\end{aligned}
$$

To find the optimal decision:

- Create a factor for each conditional probability and for the utility
- Sum out all of the random variables
- This creates a factor on D that gives the expected utility for each D
- Choose the D with the maximum value in the factor.

Example Initial Factors

Which Way	Accident	Probability
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

Which Way	Accident	Wear Pads	Utility
long	true	true	30
long	true	false	0
long	false	true	75
long	false	false	80
short	true	true	35
short	true	false	3
short	false	true	95
short	false	false	100

Example Initial Factors

Which Way	Accident	Probability
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

Which Way	y Accident	Wear Pads	Utility	
long	true	true	30	
long	true	false	0	
long	false	true	75	
long	false	false	80	
short	true	true	35	
short	true	false	3	
short	false	true	95	
short	false	false	100	
	Which Way	Wear pads	Value	
	long	true	0.01*30	$+0.99 * 75=74.55$
	long	false	0.01*0+	-0.99*80 $=79.2$
	short	true	$0.2 * 35+$	$-0.8 * 95=83$
	short	false	$0.2 * 3+0$	0.8*100=80.6

Thus the optimal policy is to take the short way and wear pads, with an expected utility of 83 .

Example Initial Factors

Which Way	Accident	Probability
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

Which Way	y Accident	Wear Pads	Utility	
long	true	true	30	
long	true	false	0	
long	false	true	75	
long	false	false	80	
short	true	true	35	
short	true	false	3	
short	false	true	95	
short	false	false	100	
	Which Way	Wear pads	Value	
	long	true	0.01*30	$+0.99 * 75=74.55$
	long	false	0.01*0+	-0.99*80 $=79.2$
	short	true	$0.2 * 35+$	$-0.8 * 95=83$
	short	false	$0.2 * 3+0$	0.8*100=80.6

Thus the optimal policy is to take the short way and wear pads, with an expected utility of 83 .

