CSPs: Search and Arc Consistency

CPSC 322 - CSPs 2

September 28, 2007 Textbook §4.3 – 4.5

- Recap
- 2 Generate-and-Test
- Search
- 4 Consistency
- 6 Arc Consistency

Variables

- We define the state of the world as an assignment of values to a set of variables
 - variable: a synonym for feature
 - we denote variables using capital letters
 - each variable V has a domain dom(V) of possible values
- Variables can be of several main kinds:
 - Boolean: |dom(V)| = 2
 - Finite: the domain contains a finite number of values
 - Infinite but Discrete: the domain is countably infinite
 - ullet Continuous: e.g., real numbers between 0 and 1
- We'll call the set of states that are induced by a set of variables the set of possible worlds

Constraints

Constraints are restrictions on the values that one or more variables can take

- Unary constraint: restriction involving a single variable
 - of course, we could also achieve the same thing by using a smaller domain in the first place
- k-ary constraint: restriction involving the domains of k different variables
 - it turns out that k-ary constraints can always be represented as binary constraints, so we'll often talk about this case
- Constraints can be specified by
 - giving a list of valid domain values for each variable participating in the constraint
 - giving a function that returns true when given values for each variable which satisfy the constraint
- A possible world satisfies a set of constraints if the set of variables involved in each constraint take values that are consistent with that constraint

Constraint Satisfaction Problems: Definition

Definition

A constraint satisfaction problem consists of:

- a set of variables
- a domain for each variable
- a set of constraints

Definition

A model of a CSP is an assignment of values to variables that satisfies all of the constraints.

- Recap
- 2 Generate-and-Test
- Search
- 4 Consistency
- 6 Arc Consistency

Generate-and-Test Algorithm

- The assignment space of a CSP is the space of possible worlds
- Algorithm:
 - Generate possible worlds one at a time from the assignment space
 - Test them to see if they violate any constraints
- This procedure is able to solve any CSP
- However, the running time is proportional to the size of the state space
 - always exponential in the number of variables
 - far too long for many CSPs

- Recap
- 2 Generate-and-Test
- Search
- 4 Consistency
- 6 Arc Consistency

In order to think about better ways to solve CSPs, let's map CSPs into search problems.

- nodes: assignments of values to a subset of the variables
- neighbours of a node: nodes in which values are assigned to one additional variable
- start node: the empty assignment (no variables assigned values)
- leaf node: a node which assigns a value to each variable
- goal node: leaf node which satisfies all of the constraints

Note: the path to a goal node is not important

• What search strategy will work well for a CSP?

- What search strategy will work well for a CSP?
 - there are no costs, so there's no role for a heuristic function
 - the tree is always finite and has no cycles, so DFS is better than BFS
 - DFS is one way of implementing generate-and-test

- What search strategy will work well for a CSP?
 - there are no costs, so there's no role for a heuristic function
 - the tree is always finite and has no cycles, so DFS is better than BFS
 - DFS is one way of implementing generate-and-test
- How can we prune the DFS search tree?

- What search strategy will work well for a CSP?
 - there are no costs, so there's no role for a heuristic function
 - the tree is always finite and has no cycles, so DFS is better than BFS
 - DFS is one way of implementing generate-and-test
- How can we prune the DFS search tree?
 - once we reach a node that violates one or more constraints, we know that a solution cannot exist below that point
 - thus we should backtrack rather than continuing to search
 - this can yield us exponential savings over generate-and-test, though it's still exponential

Example

Recap

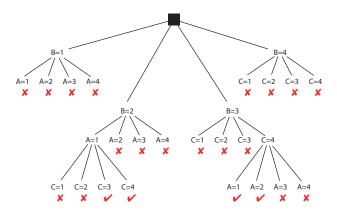
Problem:

• Variables: A, B, C

• Domains: $\{1, 2, 3, 4\}$

• Constraints: A < B, B < C

Example



Note: the algorithm's efficiency depends on the order in which variables are expanded

- Recap
- 2 Generate-and-Test
- Search
- 4 Consistency
- 6 Arc Consistency

Consistency Algorithms

• Idea: prune the domains as much as possible before selecting values from them.

Definition

A variable is domain consistent if no value of the domain of the node is ruled impossible by any of the constraints.

• Example: $\mathbf{D}_B = \{1, 2, 3, 4\}$ isn't domain consistent if we have the constraint $B \neq 3$.

Constraint Networks

- Domain consistency only talked about constraints involving a single variable
 - what can we say about constraints involving multiple variables?

Definition

A constraint network is defined by a graph, with

- one node for every variable
- one node for every constraint

and undirected edges running between variable nodes and constraint nodes whenever a given variable is involved in a given constraint.

- When all of the constraints are binary, constraint nodes are not necessary: we can drop constraint nodes and use edges to indicate that a constraint holds between a pair of variables.
 - why can't we do the same with general k-ary constraints?

Example Constraint Network



Recall:

• Variables: A, B, C

• Domains: $\{1, 2, 3, 4\}$

• Constraints: A < B, B < C

- Recap
- 2 Generate-and-Test
- Search
- 4 Consistency
- 6 Arc Consistency

Arc Consistency

Definition

An arc $\langle X, r(X, \bar{Y}) \rangle$ is arc consistent if for each value of X in \mathbf{D}_X there is some value \bar{Y} in $\mathbf{D}_{\bar{Y}}$ such that $r(X, \bar{Y})$ is satisfied.

- In symbols, $\forall X \in \mathbf{D}_X, \ \exists \bar{Y} \in \mathbf{D}_{\bar{Y}} \ \text{such that} \ r(X, \bar{Y}) \ \text{is satisfied}.$
- A network is arc consistent if all its arcs are arc consistent.
- If an arc $\langle X, \bar{Y} \rangle$ is *not* arc consistent, all values of X in \mathbf{D}_X for which there is no corresponding value in $\mathbf{D}_{\bar{Y}}$ may be deleted from \mathbf{D}_X to make the arc $\langle X, \bar{Y} \rangle$ consistent.
 - This removal can never rule out any models (do you see why?)

