Uninformed Search

CPSC 322 Lecture 5

January 17, 2007
Textbook §2.4
Lecture Overview

1. Graph Search
2. Searching
3. Depth-First Search
What we want to be able to do:
- find a solution when we are not given an algorithm to solve a problem, but only a specification of what a solution looks like
- idea: search for a solution

What we need:
- A set of states
- A start state
- A goal state or set of goal states
 - or, equivalently, a goal test: a boolean function which tells us whether a given state is a goal state
- A set of actions
- An action function: a mapping from a state and an action to a new state
Abstract Definition

How to search

- Start at the start state
- Consider the effect of taking different actions starting from states that have been encountered in the search so far
- Stop when a goal state is encountered

To make this more formal, we’ll need to talk about graphs...
A graph consists of
- a set N of nodes;
- a set A of ordered pairs of nodes, called arcs or edges.

Node n_2 is a neighbor of n_1 if there is an arc from n_1 to n_2.
- i.e., if $\langle n_1, n_2 \rangle \in A$

A path is a sequence of nodes $\langle n_0, n_1, \ldots, n_k \rangle$ such that $\langle n_{i-1}, n_i \rangle \in A$.

Given a start node and a set of goal nodes, a solution is a path from the start node to a goal node.
The agent starts outside room 103, and wants to end up inside room 123.
Example Graph for the Delivery Robot

Uninformed Search
Graph Searching

- Generic search algorithm: given a graph, start nodes, and goal nodes, incrementally explore paths from the start nodes.
- Maintain a frontier of paths from the start node that have been explored.
- As search proceeds, the frontier expands into the unexplored nodes until a goal node is encountered.
Problem Solving by Graph Searching

- **Frontier**
- **Explored nodes**
- **Unexplored nodes**
- **Start node**

Uninformed Search
Generic search algorithm: given a graph, start nodes, and goal nodes, incrementally explore paths from the start nodes.

Maintain a frontier of paths from the start node that have been explored.

As search proceeds, the frontier expands into the unexplored nodes until a goal node is encountered.

The way in which the frontier is expanded defines the search strategy.
Lecture Overview

1. Graph Search

2. Searching

3. Depth-First Search
Graph Search Algorithm

Input: a graph,
a set of start nodes,
Boolean procedure $goal(n)$ that tests if n is a goal node.

$frontier := \{\langle s \rangle : s \text{ is a start node}\};$

while $frontier$ is not empty:

- **select and remove** path $\langle n_0, \ldots, n_k \rangle$ from $frontier$;
 - **if** $goal(n_k)$
 - **return** $\langle n_0, \ldots, n_k \rangle$;
 - **for every** neighbor n of n_k
 - **add** $\langle n_0, \ldots, n_k, n \rangle$ to $frontier$;

end while

- After the algorithm returns, it can be asked for more answers and the procedure continues.
- Which value is selected from the frontier defines the search strategy.
- The *neighbor* relationship defines the graph.
- The *goal* function defines what is a solution.
The forward branching factor of a node is the number of arcs going out of that node.

The backward branching factor of a node is the number of arcs going into the node.

If the forward branching factor of every node is b and the graph is a tree, how many nodes are exactly n steps away from the start node?
The forward branching factor of a node is the number of arcs going out of that node.
The backward branching factor of a node is the number of arcs going into the node.
If the forward branching factor of every node is b and the graph is a tree, how many nodes are exactly n steps away from the start node?
$\quad b^n$ nodes.
We’ll assume that all branching factors are finite.
Comparing Algorithms

- **Completeness**
 - if at least one solution exists, the algorithm is guaranteed to find a solution within a finite amount of time

- **Time Complexity**
 - in terms of the maximum path length m, and the maximum branching factor b, what is the worst-case amount of time that the algorithm will take to run?

- **Space Complexity**
 - in terms of m and b, what is the worst-case amount of memory that the algorithm must use?
Lecture Overview

1 Graph Search

2 Searching

3 Depth-First Search
Depth-first Search

- **Depth-first search** treats the frontier as a stack
- It always selects one of the last elements added to the frontier.

Example:
- the frontier is \([p_1, p_2, \ldots, p_r]\)
- neighbours of \(p_1\) are \(\{n_1, \ldots, n_k\}\)

What happens?
- \(p_1\) is selected, and tested for being a goal.
- Neighbours of \(p_1\) replace \(p_1\) at the beginning of the frontier.
- Thus, the frontier is now \([n_1, \ldots, n_k, p_2, \ldots, p_r]\).
- \(p_2\) is only selected when all paths from \(p_1\) have been explored.
Illustrative Graph — Depth-first Search
Is DFS complete?

Depth-first search isn’t guaranteed to halt on infinite graphs or on graphs with cycles. However, DFS is complete for finite trees.

What is the time complexity, if the maximum path length is \(m \) and the maximum branching factor is \(b \)?

The time complexity is \(O(b^m) \): must examine every node in the tree. Search is unconstrained by the goal until it happens to stumble on the goal.

What is the space complexity?

Space complexity is \(O(bm) \): the longest possible path is \(m \), and for every node in that path must maintain a fringe of size \(b \).
Is DFS complete?
- Depth-first search isn't guaranteed to halt on infinite graphs or on graphs with cycles.
- However, DFS is complete for finite trees.
Is DFS complete?

- Depth-first search isn't guaranteed to halt on infinite graphs or on graphs with cycles.
- However, DFS is complete for finite trees.

What is the time complexity, if the maximum path length is m and the maximum branching factor is b?

The time complexity is $O(b^m)$: must examine every node in the tree.

Search is unconstrained by the goal until it happens to stumble on the goal.

What is the space complexity?

Space complexity is $O(bm)$: the longest possible path is m, and for every node in that path must maintain a fringe of size b.
Is DFS complete?
- Depth-first search isn't guaranteed to halt on infinite graphs or on graphs with cycles.
- However, DFS is complete for finite trees.

What is the time complexity, if the maximum path length is m and the maximum branching factor is b?
- The time complexity is $O(b^m)$: must examine every node in the tree.
- Search is unconstrained by the goal until it happens to stumble on the goal.

Space complexity is $O(bm)$: the longest possible path is m, and for every node in that path must maintain a fringe of size b.
Is DFS complete?
- Depth-first search isn't guaranteed to halt on infinite graphs or on graphs with cycles.
- However, DFS is complete for finite trees.

What is the time complexity, if the maximum path length is m and the maximum branching factor is b?
- The time complexity is $O(b^m)$: must examine every node in the tree.
- Search is unconstrained by the goal until it happens to stumble on the goal.

What is the space complexity?
Is DFS complete?
- Depth-first search isn’t guaranteed to halt on infinite graphs or on graphs with cycles.
- However, DFS is complete for finite trees.

What is the time complexity, if the maximum path length is m and the maximum branching factor is b?
- The time complexity is $O(b^m)$: must examine every node in the tree.
- Search is unconstrained by the goal until it happens to stumble on the goal.

What is the space complexity?
- Space complexity is $O(bm)$: the longest possible path is m, and for every node in that path must maintain a fringe of size b.
Using Depth-First Search

- When is DFS appropriate?
 - space is restricted
 - solutions tend to occur at the same depth in the tree
 - you know how to order nodes in the list of neighbours so that solutions will be found relatively quickly

- When is DFS inappropriate?
 - some paths have infinite length
 - the graph contains cycles
 - some solutions are very deep, while others are very shallow
Using Depth-First Search

- **When is DFS appropriate?**
 - space is restricted
 - solutions tend to occur at the same depth in the tree
 - you know how to order nodes in the list of neighbours so that solutions will be found relatively quickly
Using Depth-First Search

- **When is DFS appropriate?**
 - space is restricted
 - solutions tend to occur at the same depth in the tree
 - you know how to order nodes in the list of neighbours so that solutions will be found relatively quickly

- **When is DFS inappropriate?**
 - some paths have infinite length
 - the graph contains cycles
 - some solutions are very deep, while others are very shallow
Using Depth-First Search

When is DFS appropriate?
- space is restricted
- solutions tend to occur at the same depth in the tree
- you know how to order nodes in the list of neighbours so that solutions will be found relatively quickly

When is DFS inappropriate?
- some paths have infinite length
- the graph contains cycles
- some solutions are very deep, while others are very shallow