Decision Theory: Single Decisions

CPSC 322 Lecture 31

March 30, 2007 Textbook §12.2

Lecture Overview

Recap

Decision Problems

Single Decisions

Markov chain

► A Markov chain is a special sort of belief network:

- ▶ Thus $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$.
- ▶ Often S_t represents the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The past is independent of the future given the present."

Hidden Markov Model

► A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:



- $ightharpoonup P(S_0)$ specifies initial conditions
- ▶ $P(S_{t+1}|S_t)$ specifies the dynamics
- $ightharpoonup P(O_t|S_t)$ specifies the sensor model

Decisions Under Uncertainty

- ► An agent's decision will depend on:
 - 1. what actions are available
 - 2. what beliefs the agent has
 - note: this replaces "state" from the deterministic setting
 - 3. the agent's goals
 - a richer notion of goals: rating how happy the agent is in different situations

Lecture Overview

Recap

Decision Problems

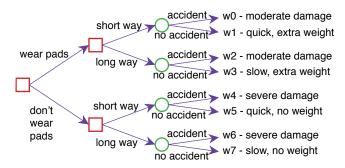
Single Decisions

Decision Variables

- Decision variables are like random variables whose value an agent gets to set.
- A possible world specifies a value for each random variable and each decision variable.
 - For each assignment of values to all decision variables, the measures of the worlds satisfying that assignment sum to 1.
 - The probability of a proposition is undefined unless you condition on the values of all decision variables.

Decision Tree for Delivery Robot

- ► The robot can choose to wear pads to protect itself or not.
- ► The robot can choose to go the short way past the stairs or a long way that reduces the chance of an accident.
- ► There is one random variable indicating whether there is an accident.



Utility

- Utility: a measure of desirability of worlds to an agent.
 - Let U be a real-valued function such that $U(\omega)$ represents an agent's degree of preference for world ω .
- Simple goals can still be specified, using a boolean utility function:
 - worlds that satisfy the goal have utility 1
 - other worlds have utility 0
- ▶ Utilities can also be more complicated. For example, in the delivery robot domain, utility might be the sum of:
 - some function of the amount of damage to a robot
 - ▶ how much energy is left
 - what goals are achieved
 - how much time it has taken.

Expected Utility

What is the utility of an achieving a certain probability distribution over possible worlds?

Expected Utility

What is the utility of an achieving a certain probability distribution over possible worlds?

- The expected value of a function of possible worlds is its average value, weighting possible worlds by their probability.
- ▶ Suppose U(w) is the utility of world world w.
 - ► The expected utility is

$$\mathbb{E}(U) = \sum_{\omega \in \Omega} P(\omega) \times U(\omega).$$

ightharpoonup The conditional expected utility given e is

$$\mathbb{E}(U|e) = \sum_{\omega \models e} P(\omega|e) \times U(\omega).$$

Lecture Overview

Recap

Decision Problems

Single Decisions

Single decisions

- ▶ Given a single decision variable, the agent can choose $D = d_i$ for any $d_i \in dom(D)$.
- ▶ The expected utility of decision $D = d_i$ is $\mathbb{E}(U|D = d_i)$.
- An optimal single decision is the decision $D = d_{max}$ whose expected utility is maximal:

$$d_{max} \in \underset{d_i \in dom(D)}{\operatorname{arg max}} \mathbb{E}(U|D = d_i).$$

Single-stage decision networks

Extend belief networks with:

- Decision nodes, that the agent chooses the value for. Domain is the set of possible actions. Drawn as rectangle.
- Utility node, the parents are the variables on which the utility depends. Drawn as a diamond.

This shows explicitly which nodes affect whether there is an accident.

Finding the optimal decision

Suppose the random variables are X_1, \ldots, X_n , and utility depends on X_{i_1}, \ldots, X_{i_k}

$$\mathbb{E}(U|D) = \sum_{X_1, \dots, X_n} P(X_1, \dots, X_n | D) \times U(X_{i_1}, \dots, X_{i_k})$$
$$= \sum_{X_1, \dots, X_n} \prod_{i=1}^n P(X_i | pX_i) \times U(X_{i_1}, \dots, X_{i_k})$$

Finding the optimal decision

Suppose the random variables are X_1, \ldots, X_n , and utility depends on X_{i_1}, \ldots, X_{i_k}

$$\mathbb{E}(U|D) = \sum_{X_1, \dots, X_n} P(X_1, \dots, X_n | D) \times U(X_{i_1}, \dots, X_{i_k})$$

$$= \sum_{X_1, \dots, X_n} \prod_{i=1}^n P(X_i | pX_i) \times U(X_{i_1}, \dots, X_{i_k})$$

To find the optimal decision:

- Create a factor for each conditional probability and for the utility
- Sum out all of the random variables
- This creates a factor on D that gives the expected utility for each D
- ▶ Choose the *D* with the maximum value in the factor.

Example Initial Factors

ĺ	Which Way	Accident	Probability
	long	true	0.01
İ	long	false	0.99
İ	short	true	0.2
	short	false	0.8

Which Way	Accident	Wear Pads	Utility
long	true	true	30
long	true	false	0
long	false	true	75
long	false	false	80
short	true	true	35
short	true	false	3
short	false	true	95
short	false	false	100

Example Initial Factors

Which Wa	y Accident	Probability
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

Which Way	Accident	Wear Pads	Utility
long	true	true	30
long	true	false	0
long	false	true	75
long	false	false	80
short	true	true	35
short	true	false	3
short	false	true	95
short	false	false	100

Sum out Accident:

Which Way	Wear pads	Value
long	true	0.01*30+0.99*75=74.55
long	false	0.01*0+0.99*80=79.2
short	true	0.2* 35+ 0.8*95=83
short	false	0.2*3+0.8*100=80.6

Thus the optimal policy is to take the short way and wear pads, with an expected utility of 83.

Example Initial Factors

Which Wa	y Accident	Probability
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

Which Way	Accident	Wear Pads	Utility
long	true	true	30
long	true	false	0
long	false	true	75
long	false	false	80
short	true	true	35
short	true	false	3
short	false	true	95
short	false	false	100

Sum out Accident:

	Which Way	Wear pads	Value
	long	true	0.01*30+0.99*75=74.55
ĺ	long	false	0.01*0+0.99*80=79.2
	short	true	0.2* 35+ 0.8*95=83
	short	false	0.2*3+0.8*100=80.6

Thus the optimal policy is to take the short way and wear pads, with an expected utility of 83.