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Variable elimination algorithm

To compute P (Q|Y1 = v1 ∧ . . . ∧ Yj = vj):
I Construct a factor for each conditional probability.

I Set the observed variables to their observed values.

I For each of the other variables Zi ∈ {Z1, . . . , Zk}, sum out Zi

I Multiply the remaining factors.

I Normalize by dividing the resulting factor f(Q) by
∑

Q f(Q).
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One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate
all leaf nodes that are neither observed nor queried, until we reach
a fixed point.

smokealarm

fire
Can we justify that on a three-
node graph—Fire, Alarm, and
Smoke—when we ask for:

I P (Fire)?
I P (Fire | Alarm)?
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Markov chain

I A Markov chain is a special sort of belief network:

S0 S1 S2 S3 S4

I Thus P (St+1|S0, . . . , St) = P (St+1|St).
I Often St represents the state at time t. Intuitively St conveys

all of the information about the history that can affect the
future states.

I “The past is independent of the future given the present.”
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Stationary Markov chain

S0 S1 S2 S3 S4

I A stationary Markov chain is when for all t > 0, t′ > 0,
P (St+1|St) = P (St′+1|St′).

I We specify P (S0) and P (St+1|St).
I Simple model, easy to specify
I Often the natural model
I The network can extend indefinitely
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Hidden Markov Model

I A Hidden Markov Model (HMM) starts with a Markov chain,
and adds a noisy observation about the state at each time
step:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

I P (S0) specifies initial conditions
I P (St+1|St) specifies the dynamics
I P (Ot|St) specifies the sensor model
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Example: localization

I Suppose a robot wants to determine its location based on its
actions and its sensor readings: Localization

I This can be represented by the augmented HMM:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

A0 A1 A2 A3
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Example localization domain

I Circular corridor, with 16 locations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I Doors at positions: 2, 4, 7, 11.

I Noisy Sensors

I Stochastic Dynamics

I Robot starts at an unknown location and must determine
where it is.
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Example Sensor Model

I P (Observe Door | At Door) = 0.8
I P (Observe Door | Not At Door) = 0.1
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Example Dynamics Model

I P (loct+1 = L|actiont = goRight ∧ loct = L) = 0.1
I P (loct+1 = L + 1|actiont = goRight ∧ loct = L) = 0.8
I P (loct+1 = L + 2|actiont = goRight ∧ loct = L) = 0.074
I P (loct+1 = L′|actiont = goRight∧ loct = L) = 0.002 for any

other location L′.
I All location arithmetic is modulo 16.
I The action goLeft works the same but to the left.
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Combining sensor information

I Example: we can combine information from a light sensor and
the door sensor: “Sensor Fusion”

S0 S1 S2 S3 S4

D0 D1 D2 D3 D4

L0 L1 L2 L3 L4

I St: robot location at time t

I Dt: door sensor value at time t

I Lt: light sensor value at time t
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Localization demo

I http://www.cs.ubc.ca/spider/poole/demos/
localization/localization.html
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Decisions Under Uncertainty

I In the first part of the course we focused on decision making
in domains where the environment was understood with
certainty

I Search/CSPs: single decisions
I Planning: sequential decisions

I In uncertain domains, we’ve so far only considered how to
represent and update beliefs

I What if an agent has to make decisions in a domain that
involves uncertainty?

I this is likely: one of the main reasons to represent the world
probabilistically is to be able to use these beliefs as the basis
for making decisions
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Decisions Under Uncertainty

I An agent’s decision will depend on:

1. what actions are available
2. what beliefs the agent has

I note: this replaces “state” from the deterministic setting

3. the agent’s goals

I We’ve spoken quite a lot about (1) and (2).
I today let’s consider (3)
I we’ll move from all-or-nothing goals to a richer notion: rating

how happy the agent is in different situations
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