Reasoning Under Uncertainty: Variable Elimination Example

CPSC 322 Lecture 29

March 26, 2007 Textbook §9.5

Lecture Overview

Recap

2 More Variable Elimination

3 Variable Elimination Example

Summing out variables

Our second operation: we can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j)$$
= $f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$

Multiplying factors

- Our third operation: factors can be multiplied together.
- The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y}) f_2(\overline{Y}, \overline{Z}).$$

Probability of a conjunction

- Suppose the variables of the belief network are X_1, \ldots, X_n .
- $\{X_1, \ldots, X_n\} = \{Q\} \cup \{Y_1, \ldots, Y_j\} \cup \{Z_1, \ldots, k\}$
 - Q is the query variable
 - $\{Y_1, \ldots, Y_j\}$ is the set of observed variables
 - $\{Z_1,\ldots,_k\}$ is the rest of the variables, that are neither queried nor observed
- What we want to compute: $P(Q, Y_1 = v_1, \dots, Y_j = v_j)$
- We can compute $P(Q, Y_1 = v_1, \dots, Y_j = v_j)$ by summing out each variable Z_1, \dots, Z_k
- We sum out these variables one at a time
 - the order in which we do this is called our elimination ordering.

$$P(Q, Y_1 = v_1, \dots, Y_j = v_j) = \sum_{Z_k} \dots \sum_{Z_1} P(X_1, \dots, X_n) Y_1 = v_1, \dots, Y_j = v_j.$$

Probability of a conjunction

- What we know: the factors $P(X_i|pX_i)$.
- Using the chain rule and the definition of a belief network, we can write $P(X_1, \ldots, X_n)$ as $\prod_{i=1}^n P(X_i|pX_i)$. Thus:

$$P(Q, Y_1 = v_1, \dots, Y_j = v_j)$$

$$= \sum_{Z_k} \dots \sum_{Z_1} P(X_1, \dots, X_n)_{Y_1 = v_1, \dots, Y_j = v_j}.$$

$$= \sum_{Z_k} \dots \sum_{Z_1} \prod_{i=1}^n P(X_i | pX_i)_{Y_1 = v_1, \dots, Y_j = v_j}.$$

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently?
 - factor out the a and then the h giving a(b+c+d+h(e+f+g))
 - this takes only 7 multiplications or additions
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i|pX_i)$ efficiently?
- Factor out those terms that don't involve Z_1 :

$$\left(\prod_{i|Z_1 \notin \{X_i\} \cup pX_i} P(X_i|pX_i)\right) \left(\sum_{Z_1} \prod_{i|Z_1 \in \{X_i\} \cup pX_i} P(X_i|pX_i)\right)$$

(terms that do not involve Z_i)

(terms that involve Z_i)

Lecture Overview

Recap

2 More Variable Elimination

3 Variable Elimination Example

Summing out a variable efficiently

To sum out a variable Z_i from a product f_1, \ldots, f_k of factors:

- Partition the factors into
 - those that don't contain Z_j , say f_1, \ldots, f_i ,
 - those that contain Z_j , say f_{i+1}, \ldots, f_k

We know:

$$\sum_{Z_j} f_1 \times \cdots \times f_k = (f_1 \times \cdots \times f_i) \left(\sum_{Z_j} f_{i+1} \times \cdots \times f_k \right).$$

- $\left(\sum_{Z_j} f_{i+1} \times \cdots \times f_k\right)$ is a new factor; let's call it f'.
- Now we have:

$$\sum_{Z_i} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f'.$$

• Store f' explicitly, and discard f_{i+1}, \ldots, f_k . Now we've summed out Z_i .

Variable elimination algorithm

To compute $P(Q|Y_1 = v_1 \land \ldots \land Y_i = v_i)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- For each of the other variables $Z_i \in \{Z_1, \dots, Z_k\}$, sum out Z_i
- Multiply the remaining factors.
- Normalize by dividing the resulting factor f(Q) by $\sum_{Q} f(Q)$.

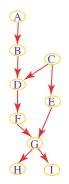
Lecture Overview

1 Recap

2 More Variable Elimination

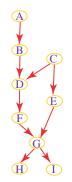
3 Variable Elimination Example

- $P(G, H) = \sum_{A,B,C,D,E,F,I} P(A, B, C, D, E, F, G, H, I)$
- $P(G, H) = \sum_{A,B,C,D,E,F,I} P(A) \cdot P(B|A) \cdot P(C) \cdot P(D|B,C) \cdot P(E|C) \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$



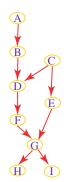
Compute $P(G|H = h_1)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H) = \sum_{A,B,C,D,E,F,I} P(A) \cdot P(B|A) \cdot P(C) \cdot P(D|B,C) \cdot P(E|C) \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$
- Eliminate A: $P(G, H) = \sum_{B,C,D,E,F,I} f_1(B) \cdot P(C) \cdot P(D|B,C) \cdot P(E|C) \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$



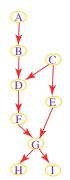
• $f_1(B) := \sum_{a \in dom(A)} P(A=a) \cdot P(B|A=a)$

- $P(G, H) = \sum_{B,C,D,E,F,I} f_1(B) \cdot P(C) \cdot P(D|B,C) \cdot P(E|C) \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$
- Eliminate $C: P(G, H) = \sum_{B,D,E,F,I} f_1(B) \cdot \frac{f_2(B,D,E)}{f_2(B,D,E)} \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$



- $f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$
- $f_2(B, D, E) := \sum_{c \in dom(C)} P(C = c) \cdot P(D|B, C = c) \cdot P(E|C = c)$

- $P(G, H) = \sum_{B,D,E,F,I} f_1(B) \cdot f_2(B,D,E) \cdot P(F|D) \cdot P(G|F,E) \cdot P(H|G) \cdot P(I|G)$
- Eliminate E: $P(G,H) = \sum_{B,D,F,I} f_1(B) \cdot f_3(B,D,F,G) \cdot P(F|D) \cdot P(H|G) \cdot P(I|G)$

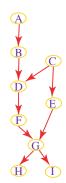


- $f_1(B) := \sum_{a \in dom(A)} P(A=a) \cdot P(B|A=a)$
- $f_2(B, D, E) := \sum_{c \in dom(C)} P(C = c) \cdot P(D|B, C = c) \cdot P(E|C = c)$
- $f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$

Compute $P(G|H=h_1)$. Elimination order: A, C, E, H, I, B, D, F

•
$$P(G, H) = \sum_{B,D,F,I} f_1(B) \cdot f_3(B, D, F, G) \cdot P(F|D) \cdot P(H|G) \cdot P(I|G)$$

• Observe $H = h_1$: $P(G, H = h_1) = \sum_{B, D, F, I} f_1(B) \cdot f_3(B, D, F, G) \cdot P(F|D) \cdot f_4(G) \cdot P(I|G)$



•
$$f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$$

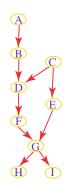
•
$$f_2(B,D,E) := \sum_{c \in dom(C)} P(C=c) \cdot P(D|B,C=c) \cdot P(E|C=c)$$

•
$$f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$$

•
$$f_4(G) := P(H = h_1|G)$$

- $P(G, H = h_1) = \sum_{B,D,F,I} f_1(B) \cdot f_3(B,D,F,G) \cdot P(F|D) \cdot f_4(G) \cdot P(I|G)$
- Eliminate *I*:

$$P(G, H = h_1) = \sum_{B,D,F} f_1(B) \cdot f_3(B, D, F, G) \cdot P(F|D) \cdot f_4(G) \cdot f_5(G)$$



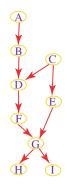
- $f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$
- $f_2(B, D, E) := \sum_{c \in dom(C)} P(C = c) \cdot P(D|B, C = c) \cdot P(E|C = c)$
- $f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$
- $f_4(G) := P(H = h_1|G)$
- $f_5(G) := \sum_{i \in dom(I)} P(I = i | G)$

Compute $P(G|H = h_1)$. Elimination order: A, C, E, H, I, B, D, F

•
$$P(G, H = h_1) = \sum_{B,D,F} f_1(B) \cdot f_3(B, D, F, G) \cdot P(F|D) \cdot f_4(G) \cdot f_5(G)$$

• Eliminate B:

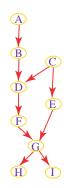
$$P(G, H = h_1) = \sum_{D,F} f_6(D, F, G) \cdot P(F|D) \cdot f_4(G) \cdot f_5(G)$$



- $f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$
- $f_2(B, D, E) := \sum_{c \in dom(C)} P(C = c) \cdot P(D|B, C = c) \cdot P(E|C = c)$
- $f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$
- $f_4(G) := P(H = h_1|G)$
- $f_5(G) := \sum_{i \in dom(I)} P(I = i|G)$
- $f_6(D, F, G) := \sum_{b \in dom(B)} f_1(B = b) \cdot f_3(B = b, D, F, G)$

•
$$P(G, H = h_1) = \sum_{D,F} f_6(D, F, G) \cdot P(F|D) \cdot f_4(G) \cdot f_5(G)$$

• Eliminate D:
$$P(G, H = h_1) = \sum_{F} f_7(F, G) \cdot f_4(G) \cdot f_5(G)$$



•
$$f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$$

$$\bullet \ f_2(B,D,E) := \sum_{c \in dom(C)} P(C=c) \cdot P(D|B,C=c) \cdot P(E|C=c)$$

•
$$f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$$

•
$$f_4(G) := P(H = h_1|G)$$

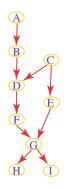
•
$$f_5(G) := \sum_{i \in dom(I)} P(I = i|G)$$

•
$$f_6(D, F, G) := \sum_{b \in dom(B)} f_1(B = b) \cdot f_3(B = b, D, F, G)$$

•
$$f_7(F,G) := \sum_{d \in dom(D)} f_6(D = d, F, G) \cdot P(F|D = d)$$

•
$$P(G, H = h_1) = \sum_{F} f_7(F, G) \cdot f_4(G) \cdot f_5(G)$$

• Eliminate
$$F: P(G, H = h_1) = f_8(G) \cdot f_4(G) \cdot f_5(G)$$



•
$$f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$$

•
$$f_2(B, D, E) := \sum_{c \in dom(C)} P(C = c) \cdot P(D|B, C = c) \cdot P(E|C = c)$$

•
$$f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$$

•
$$f_4(G) := P(H = h_1|G)$$

•
$$f_5(G) := \sum_{i \in dom(I)} P(I = i | G)$$

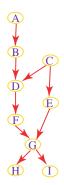
•
$$f_6(D, F, G) := \sum_{b \in dom(B)} f_1(B = b) \cdot f_3(B = b, D, F, G)$$

•
$$f_7(F,G) := \sum_{d \in dom(D)} f_6(D = d, F, G) \cdot P(F|D = d)$$

•
$$f_8(G) := \sum_{f \in dom(F)} f_7(F = f, G)$$

•
$$P(G, H = h_1) = f_8(G) \cdot f_4(G) \cdot f_5(G)$$

$$\bullet$$
 Normalize: $P(G|H=h_1) = \frac{P(G,H=h_1)}{\sum_{g \in dom(G)} P(G,H=h_1)}$



•
$$f_1(B) := \sum_{a \in dom(A)} P(A = a) \cdot P(B|A = a)$$

•
$$f_2(B, D, E) := \sum_{c \in dom(C)} P(C = c) \cdot P(D|B, C = c) \cdot P(E|C = c)$$

•
$$f_3(B, D, F, G) := \sum_{e \in dom(E)} f_2(B, D, E = e) \cdot P(G|F, E = e)$$

•
$$f_4(G) := P(H = h_1|G)$$

•
$$f_5(G) := \sum_{i \in dom(I)} P(I = i | G)$$

•
$$f_6(D, F, G) := \sum_{b \in dom(B)} f_1(B = b) \cdot f_3(B = b, D, F, G)$$

•
$$f_7(F,G) := \sum_{d \in dom(D)} f_6(D = d, F, G) \cdot P(F|D = d)$$

•
$$f_8(G) := \sum_{f \in dom(F)} f_7(F = f, G)$$

- That's great... but it looks incredibly painful for large graphs.
- And... why did we bother learning conditional independence?
 Does it help us at all?

- That's great... but it looks incredibly painful for large graphs.
- And... why did we bother learning conditional independence?
 Does it help us at all?
 - yes—we use the chain rule decomposition right at the beginning

- That's great... but it looks incredibly painful for large graphs.
- And... why did we bother learning conditional independence?
 Does it help us at all?
 - yes—we use the chain rule decomposition right at the beginning
- Can we use our knowledge of conditional independence to make this calculation even simpler?

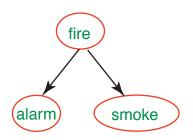
- That's great... but it looks incredibly painful for large graphs.
- And... why did we bother learning conditional independence?
 Does it help us at all?
 - yes—we use the chain rule decomposition right at the beginning
- Can we use our knowledge of conditional independence to make this calculation even simpler?
 - yes—there are some variables that we don't have to sum out
 - intuitively, they're the ones that are "pre-summed-out" in our tables
 - example: summing out I on the previous slide

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.

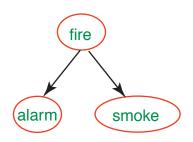


Can we justify that on a threenode graph—Fire, Alarm, and Smoke—when we ask for:

 \bullet P(Fire)?

One Last Trick

One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point.



Can we justify that on a threenode graph—Fire, Alarm, and Smoke—when we ask for:

- \bullet P(Fire)?
- \bullet $P(Fire \mid Alarm)$?