Reasoning Under Uncertainty: Variable Elimination

CPSC 322 Lecture 28

March 23, 2007 Textbook §9.4

Lecture Overview

Recap

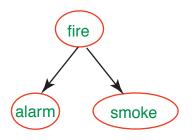
2 Factors

3 Variable Elimination

Chain

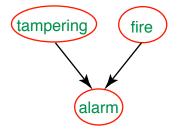
- *alarm* and *report* are independent: false.
- alarm and report are independent given leaving: true.
- Intuitively, the only way that the alarm affects report is by affecting leaving.

Common ancestors



- alarm and smoke are independent: false.
- alarm and smoke are independent given fire: true.
- Intuitively, fire can explain alarm and smoke; learning one can affect the other by changing your belief in fire.

Common descendants



- tampering and fire are independent: true.
- tampering and fire are independent given alarm: false.
- Intuitively, tampering can explain away fire

Belief Network Inference

- Our goal: compute probabilities of variables in a belief network
- Two cases:
 - 1 the unconditional (prior) distribution over one or more variables
 - 2 the posterior distribution over one or more variables, conditioned on one or more observed variables
- To address both cases, we only need a computational solution to case 1
- Our method: exploiting the structure of the network to efficiently eliminate (sum out) the non-observed, non-query variables one at a time.

Evidence

• If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_j = v_j$:

$$P(Z|Y_1 = v_1, \dots, Y_j = v_j)$$

$$= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{P(Y_1 = v_1, \dots, Y_j = v_j)}$$

$$= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{\sum_Z P(Z, Y_1 = v_1, \dots, Y_j = v_j)}.$$

• So the computation reduces to the probability of $P(Z, Y_1 = v_1, \dots, Y_j = v_j)$.

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
 - e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$
 - e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor $f(X_1, X_2)$
 - e.g., $P(X_1, X_3 = v_3 | X_2)$ is a factor $f(X_1, X_2)$

Manipulating Factors

- We can make new factors out of an existing factor
- Our first operation: we can assign some or all of the variables of a factor.
 - $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in dom(X_1)$, is a factor on X_2, \dots, X_j .
 - $f(X_1 = v_1, X_2 = v_2, \dots, X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .
- The former is also written as $f(X_1, X_2, \dots, X_j)_{X_1 = v_1, \dots, X_j = v_j}$

Lecture Overview

- Recap
- 2 Factors

3 Variable Elimination

Summing out variables

Our second operation: we can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j)$$
= $f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$

Summing out a variable example

Factors

val
.03
.07
.54
.36
.06
.14
.48
.32

	A	C	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
	f	t	0.54
	f	f	0.46

Multiplying factors

- Our third operation: factors can be multiplied together.
- The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y}) f_2(\overline{Y}, \overline{Z}).$$

Multiplying factors example

	A	B	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	D	\mathcal{C}	vai
	t	t	0.3
f_2 :	t	f	0.7
	f	t	0.6
	f	f	0.4

	A	B	C	val
$f_1 \times f_2$:	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
	t	f	f	0.36
, ,	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

Lecture Overview

Recap

2 Factors

Wariable Elimination

Probability of a conjunction

- Suppose the variables of the belief network are X_1, \ldots, X_n .
- What we want to compute: the factor $P(Z, Y_1 = v_1, \dots, Y_j = v_j)$
- We can compute $P(Z, Y_1 = v_1, \dots, Y_j = v_j)$ by summing out the variables $Z_1, \dots, Z_k = \{X_1, \dots, X_n\} \setminus \{Z, Y_1, \dots, Y_j\}$.
- We sum out these variables one at a time
 - the order in which we do this is called our elimination ordering.

$$P(Z, Y_1 = v_1, \dots, Y_j = v_j)$$

$$= \sum_{Z_k} \dots \sum_{Z_1} P(X_1, \dots, X_n) Y_1 = v_1, \dots, Y_j = v_j.$$

Probability of a conjunction

- What we know: the factors $P(X_i|pX_i)$.
- Using the chain rule and the definition of a belief network, we can write $P(X_1, ..., X_n)$ as $\prod_{i=1}^n P(X_i|pX_i)$. Thus:

$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

$$= \sum_{Z_k} \cdots \sum_{Z_1} P(X_1, ..., X_n)_{Y_1 = v_1, ..., Y_j = v_j}.$$

$$= \sum_{Z_k} \cdots \sum_{Z_1} \prod_{i=1}^n P(X_i | pX_i)_{Y_1 = v_1, ..., Y_j = v_j}.$$

Computation in belief networks thus reduces to computing the sums of products.

• It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently?

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently?
 - factor out the a and then the h giving a(b+c+d+h(e+f+g))
 - this takes only 7 multiplications or additions

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently?
 - factor out the a and then the h giving a(b+c+d+h(e+f+q))
 - this takes only 7 multiplications or additions
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i|pX_i)$ efficiently?

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently?
 - factor out the a and then the h giving a(b+c+d+h(e+f+q))
 - this takes only 7 multiplications or additions
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i|pX_i)$ efficiently?
- Factor out those terms that don't involve Z_1 :

$$\left(\prod_{i|Z_1 \notin \{X_i\} \cup pX_i} P(X_i|pX_i)\right) \left(\sum_{Z_1} \prod_{i|Z_1 \in \{X_i\} \cup pX_i} P(X_i|pX_i)\right)$$
(terms that do not involve Z_i)
(terms that involve Z_i)

40.40.45.45.5.000