Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 Lecture 27

March 21, 2007 Textbook §9.4

Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 Lecture 27, Slide 1

- ∢ ⊒ →

► < Ξ ►</p>

Lecture Overview

- 2 Observing Variables
- 3 Belief Network Inference

æ

・ 母 と ・ ヨ と ・ ヨ と

Components of a belief network

- A belief network consists of:
 - a directed acyclic graph with nodes labeled with random variables
 - a domain for each random variable
 - a set of conditional probability tables for each variable given its parents (including prior probabilities for nodes with no parents).

E + 4 E + 1

How to construct a belief <u>network</u>

- Totally order the variables of interest: X_1, \ldots, X_n
- Theorem of probability theory (chain rule): $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i | X_1, \ldots, X_{i-1})$
- The parents pX_i of X_i are those predecessors of X_i that render X_i independent of the other predecessors. That is, $pX_i \subseteq X_1, \ldots, X_{i-1}$ and $P(X_i|pX_i) = P(X_i|X_1, \ldots, X_{i-1})$
- So $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i | pX_i)$

・吊り ・ヨン ・ヨン ・ヨ

Lecture Overview

Observing Variables

3 Belief Network Inference

æ

- 4 回 2 - 4 回 2 - 4 回 2 - 4

• *alarm* and *report* are independent:

æ

• *alarm* and *report* are independent: false.

æ

・ロ・ ・ 日・ ・ 日・ ・ 日・

- *alarm* and *report* are independent: false.
- alarm and report are independent given *leaving*:

Reasoning Under Uncertainty: Belief Network Inference

æ

< ≣ >

▲ 御 ▶ → ミ ▶

- *alarm* and *report* are independent: false.
- alarm and report are independent given leaving: true.
- Intuitively, the only way that the *alarm* affects *report* is by affecting *leaving*.

• *alarm* and *smoke* are independent:

æ

• *alarm* and *smoke* are independent: false.

æ

・ロン ・四と ・日と ・日と

• *alarm* and *smoke* are independent given *fire*:

æ

- ∢ ≣ ▶

< ∃ >

- *alarm* and *smoke* are independent: false.
- *alarm* and *smoke* are independent given *fire*: true.
- Intuitively, *fire* can explain *alarm* and *smoke*; learning one can affect the other by changing your belief in *fire*.

글 🕨 🔸 글 🕨

Common descendants

• *tampering* and *fire* are independent:

Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 Lecture 27, Slide 8

æ

- 4 回 2 - 4 □ 2 - 4 □

Common descendants

• *tampering* and *fire* are independent: true.

Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 Lecture 27, Slide 8

æ

- < ≣ →

<**-**→ **-**→ **-**→

Common descendants

- *tampering* and *fire* are independent: true.
- *tampering* and *fire* are independent given *alarm*:

- < ∃ >

Factors

Common descendants

- *tampering* and *fire* are independent: true.
- tampering and fire are independent given alarm: false.
- Intuitively, *tampering* can explain away *fire*

Lecture Overview

Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 Lecture 27, Slide 9

æ

・ 回 と ・ ヨ と ・ ヨ と

Belief Network Inference

- Our goal: compute probabilities of variables in a belief network
- Two cases:
 - **(**) the unconditional (prior) distribution over one or more variables
 - e the posterior distribution over one or more variables, conditioned on one or more observed variables

Recap	Observing Variables	Belief Network Inference	Factors
Fuidence			

 If we want to compute the posterior probability of Z given evidence Y₁ = v₁ ∧ ... ∧ Yj = vj:

$$P(Z|Y_1 = v_1, \dots, Y_j = v_j) \\ = \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{P(Y_1 = v_1, \dots, Y_j = v_j)} \\ = \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{\sum_Z P(Z, Y_1 = v_1, \dots, Y_j = v_j)}$$

• So the computation reduces to the probability of $P(Z, Y_1 = v_1, \dots, Y_j = v_j).$

(ロ) (同) (E) (E) (E)

Belief Network Inference

- Our goal: compute probabilities of variables in a belief network
- Two cases:
 - **(**) the unconditional (prior) distribution over one or more variables
 - the posterior distribution over one or more variables, conditioned on one or more observed variables
- To address both cases, we only need a computational solution to case 1
- Our method: exploiting the structure of the network to efficiently eliminate (sum out) the non-observed, non-query variables one at a time.

• E • • E • •

Lecture Overview

- Observing Variables
- 3 Belief Network Inference

Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 Lecture 27, Slide 13

æ

★ 문 ► ★ 문 ►

< 🗗 🕨

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
 - e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$
 - e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor $f(X_1, X_2)$
 - e.g., $P(X_1, X_3 = v_3 | X_2)$ is a factor $f(X_1, X_2)$

(本語) (本語) (本語) (二語)

Manipulating Factors

- We can make new factors out of an existing factor
- Our first operation: we can assign some or all of the variables of a factor.
 - $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in dom(X_1)$, is a factor on X_2, \dots, X_j .
 - $f(X_1 = v_1, X_2 = v_2, \dots, X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .
- The former is also written as $f(X_1,X_2,\ldots,X_j)_{X_1\,=\,v_1,\ldots,X_j\,=\,v_j}$

<日</th>< 日</th><</th>

Factors

Example factors

						Y	Z	val
	X	Y	Z	val		t	t	0.1
	t	t	t	0.1	r(X=t, Y, Z):	t	f	0.9
	t	t	f	0.9	x	f	t	0.2
	t	f	t	0.2		f	f	0.8
r(X, Y, Z):	t	f	f	0.8				
	f	t	t	0.4				
	f	t	f	0.6			Y	val
	f	f	t	0.3	r(X=t, Y, Z=t)	=f):	t	0.9
	f	f	f	0.7			f	0.8
					r(X=t, Y=	f, Z	=f)	= 0.8

Reasoning Under Uncertainty: Belief Network Inference

CPSC 322 Lecture 27, Slide 16

æ.