Reasoning Under Uncertainty: Marginal and Conditional Independence

CPSC 322 Lecture 25

March 21, 2007
Textbook $\S 9.2$ - $\S 9.3$

Lecture Overview

(1) Recap

(2) Marginal Independence

(3) Conditional Independence

Conditioning

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model taking all background information into account. This gives the prior probability.
- All other information must be conditioned on.
- If evidence e is all of the information obtained subsequently, the conditional probability $P(h \mid e)$ of h given e is the posterior probability of h.

Conditional Probability

The conditional probability of formula h given evidence e is

$$
P(h \mid e)=\frac{P(h \wedge e)}{P(e)}
$$

Chain rule:

$$
P\left(f_{1} \wedge f_{2} \wedge \ldots \wedge f_{n}\right)=\prod_{i=1}^{n} P\left(f_{i} \mid f_{1} \wedge \cdots \wedge f_{i-1}\right)
$$

Bayes' theorem:

$$
P(h \mid e)=\frac{P(e \mid h) \times P(h)}{P(e)} .
$$

Lecture Overview

(1) Recap
(2) Marginal Independence

3 Conditional Independence

Marginal independence

Definition (marginal independence)

Random variable X is marginally independent of random variable Y if, for all $x_{i} \in \operatorname{dom}(X), y_{j} \in \operatorname{dom}(Y)$ and $y_{k} \in \operatorname{dom}(Y)$,

$$
\begin{aligned}
& P\left(X=x_{i} \mid Y=y_{j}\right) \\
& \quad=P\left(X=x_{i} \mid Y=y_{k}\right) \\
& \quad=P\left(X=x_{i}\right) .
\end{aligned}
$$

That is, knowledge of Y^{\prime} 's value doesn't affect your belief in the value of X.

Examples of marginal independence

- The probability that the Canucks will win the Stanley Cup is independent of whether light $l 1$ is lit.
- remember the diagnostic assistant domain-the picture will recur in a minute!
- Whether there is someone in a room is independent of whether a light $l 2$ is lit.
- Whether light $l 1$ is lit is not independent of the position of switch $s 2$.

Lecture Overview

(1) Recap

(2) Marginal Independence

(3) Conditional Independence

Conditional Independence

- Sometimes, two random variables might not be marginally independent. However, they can become independent after we observe some third variable.

Definition

Random variable X is conditionally independent of random variable Y given random variable Z if, for all $x_{i} \in \operatorname{dom}(X)$, $y_{j} \in \operatorname{dom}(Y), y_{k} \in \operatorname{dom}(Y)$ and $z_{m} \in \operatorname{dom}(Z)$,

$$
\begin{aligned}
& P\left(X=x_{i} \mid Y=y_{j} \wedge Z=z_{m}\right) \\
& \quad=P\left(X=x_{i} \mid Y=y_{k} \wedge Z=z_{m}\right) \\
& \quad=P\left(X=x_{i} \mid Z=z_{m}\right)
\end{aligned}
$$

- That is, knowledge of Y^{\prime} 's value doesn't affect your belief in the value of X, given a value of Z.

Conditional Independence Example

- Kevin separately phones two students, Alice and Bob.
- To each, he tells the same number, $n_{k} \in\{1, \ldots, 10\}$.
- Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
- Let the numbers Alice and Bob think they heard be n_{a} and n_{b} respectively.
- Are n_{a} and n_{b} marginally independent?

Conditional Independence Example

- Kevin separately phones two students, Alice and Bob.
- To each, he tells the same number, $n_{k} \in\{1, \ldots, 10\}$.
- Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
- Let the numbers Alice and Bob think they heard be n_{a} and n_{b} respectively.
- Are n_{a} and n_{b} marginally independent?
- No: we'd expect (e.g.) $P\left(n_{a}=1 \mid n_{b}=1\right)>P\left(n_{a}=1\right)$.

Conditional Independence Example

- Kevin separately phones two students, Alice and Bob.
- To each, he tells the same number, $n_{k} \in\{1, \ldots, 10\}$.
- Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
- Let the numbers Alice and Bob think they heard be n_{a} and n_{b} respectively.
- Are n_{a} and n_{b} marginally independent?
- No: we'd expect (e.g.) $P\left(n_{a}=1 \mid n_{b}=1\right)>P\left(n_{a}=1\right)$.
- Why are n_{a} and n_{b} conditionally independent given n_{k} ?

Conditional Independence Example

- Kevin separately phones two students, Alice and Bob.
- To each, he tells the same number, $n_{k} \in\{1, \ldots, 10\}$.
- Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said.
- Let the numbers Alice and Bob think they heard be n_{a} and n_{b} respectively.
- Are n_{a} and n_{b} marginally independent?
- No: we'd expect (e.g.) $P\left(n_{a}=1 \mid n_{b}=1\right)>P\left(n_{a}=1\right)$.
- Why are n_{a} and n_{b} conditionally independent given n_{k} ?
- Because if we know the number that Kevin actually said, the two variables are no longer correlated.
- e.g., $P\left(n_{a}=1 \mid n_{b}=1, n_{k}=2\right)=P\left(n_{a}=1 \mid n_{k}=2\right)$

Example domain (diagnostic assistant)

More examples of conditional independence

- Whether light $l 1$ is lit is independent of the position of light switch $s 2$ given whether there is power in wire w_{0}.
- two random variables that are not marginally independent can still be conditionally independent
- Every other variable may be independent of whether light $l 1$ is lit given whether there is power in wire w_{0} and the status of light $l 1$ (if it's ok, or if not, how it's broken).

More examples of conditional independence

- The probability that the Canucks will win the Stanley Cup is independent of whether light $l 1$ is lit given whether there is outside power.
- sometimes, when two random variables are marginally independent, they're also conditionally independent given a third variable.
- But not always...
- Let C_{1} be the proposition that coin 1 is heads; let C_{2} be the proposition that coin 2 is heads; let B be the proposition that coin 1 and coin 2 are both either heads or tails.
- $P\left(C_{1} \mid C_{2}\right)=P\left(C_{1}\right): C_{1}$ and C_{2} are marginally independent.
- But $P\left(C_{1} \mid C_{2}, B\right) \neq P\left(C_{1} \mid B\right)$: if I know both C_{2} and B, I know C_{1} exactly, but if I only know B I know nothing.
- Hence C_{1} and C_{2} are not conditionally independent given B.

