Local Search

CPSC 322 Lecture 13

February 5, 2007 Textbook §3.8

CPSC 322 Lecture 13, Slide 1

æ

回 と く ヨ と く ヨ と

Lecture Overview

- 2 Randomized Algorithms
- 3 Comparing SLS Algorithms
- 4 SLS Variants

æ

- 4 回 2 - 4 □ 2 - 4 □

Local Search

Stochastic Local Search for CSPs

Randomized Algorithms

- Set of Variables: the same as the variables in the CSP
- Neighbour Relation: assignments that differ in the value assigned to one variable, or in the value assigned to the variable that participates in the largest number of conflicts
- Goal is to find an assignment with all constraints satisfied.
 - Scoring function: the number of unsatisfied constraints.
 - We want an assignment with minimum score.

E 🖌 🖌 E 🕨

Hill Climbing

Hill climbing means selecting the neighbour which best improves the scoring function.

• For example, if the goal is to find the highest point on a surface, the scoring function might be the height at the current point.

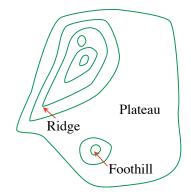
E 🖌 🖌 E 🕨

SLS Variants

Problems with Hill Climbing

Foothills local maxima that are not global maxima

- Plateaus heuristic values are uninformative
 - Ridge foothill where a larger neighbour relation would help
- Ignorance of the peak no way of detecting a global maximum



Lecture Overview

2 Randomized Algorithms

3 Comparing SLS Algorithms

4 SLS Variants

CPSC 322 Lecture 13, Slide 6

æ

→ 문 → < 문 →</p>

< 🗇 🕨

Randomized Algorithms

- Consider two methods to find a maximum value:
 - Hill climbing, starting from some position, keep moving uphill & report maximum value found
 - Pick values at random & report maximum value found
- Which do you expect to work better to find a maximum?

(3)

Randomized Algorithms

- Consider two methods to find a maximum value:
 - Hill climbing, starting from some position, keep moving uphill & report maximum value found
 - Pick values at random & report maximum value found
- Which do you expect to work better to find a maximum?
 - hill climbing is good for finding local maxima
 - selecting random nodes is good for finding new parts of the search space
- A mix of the two techniques can work even better

- A IB N - A IB N - -

Stochastic Local Search

- We can bring these two ideas together to make a randomized version of hill climbing.
- As well as uphill steps we can allow for:
 - Random steps: move to a random neighbor.
 - Random restart: reassign random values to all variables.
- Which is more expensive computationally?

E 🖌 🖌 E 🕨

Stochastic Local Search

- We can bring these two ideas together to make a randomized version of hill climbing.
- As well as uphill steps we can allow for:
 - Random steps: move to a random neighbor.
 - Random restart: reassign random values to all variables.
- Which is more expensive computationally?
 - usually, random restart (consider that there could be an extremely large number of neighbors)
 - however, if the neighbour relation is computationally expensive, random restart could be cheaper

同 と く ヨ と く ヨ と

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

• Which of hill climbing with random walk and hill climbing with random restart would most easily find the maximum?

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

- Which of hill climbing with random walk and hill climbing with random restart would most easily find the maximum?
 - left: random restart; right: random walk
- As indicated before, stochastic local search often involves both kinds of randomization

Random Walk

Some examples of ways to add randomness to local search for a CSP:

- When choosing the best variable-value pair, randomly sometimes choose a random variable-value pair.
- When selecting a variable followed by a value:
 - Sometimes choose the variable which participates in the largest number of conflicts.
 - Sometimes choose, at random, any variable that participates in some conflict.
 - Sometimes choose a random variable.
 - Sometimes choose the best value for the chosen variable.
 - Sometimes choose a random value for the chosen variable.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lecture Overview

3

< 67 ▶

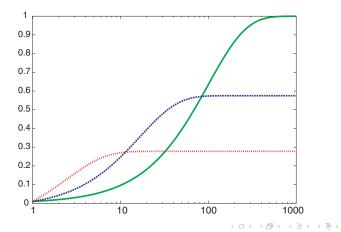
Comparing Stochastic Algorithms

- How can you compare three algorithms when (e.g.,)
 - one solves the problem 30% of the time very quickly but doesn't halt for the other 70% of the cases
 - one solves 60% of the cases reasonably quickly but doesn't solve the rest
 - one solves the problem in 100% of the cases, but slowly?
- Summary statistics, such as mean run time, median run time, and mode run time don't tell the whole story
 - mean: what should you do if an algorithm *never* finished on some runs (infinite? stopping time?)
 - median: an algorithm that finishes 51% of the time is preferred to one that finishes 49% of the time, regardless of how fast it is

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Runtime Distribution

- Plots runtime (or number of steps) and the proportion (or number) of the runs that are solved within that runtime.
 - ${\ensuremath{\, \circ }}$ note the use of a log scale on the x axis



æ

Lecture Overview

- Comparing SLS Algorithms

3

< 🗇 🕨

• 3 >

Variant: Greedy Descent with Min-Conflict Heuristic

This is one of the best techniques for solving CSP problems:

- $\bullet\,$ At random, select one of the variables v that participates in a violated constraint
- Set v to one of the values that minimizes the number of unsatisfied constraints
- This can be implemented efficiently:
 - One data structure stores constraints that are currently violated
 - One data structure stores variables that are involved in violated constraints
 - Selecting the variable to change is a random draw from the second data structure
 - For each of $v\,{}^{\prime}{\rm s}$ values i, count the number of constraints that would be violated if v took the value i
 - When the new value is set:
 - add all variables that participate in newly-violated constraints
 - check all variables that participate in newly-satisfied
 - constraints to see if they participate in any other violated 📑 🗠 🔍

Variant: Simulated Annealing

- Annealing: a metallurgical process where metals are hardened by being slowly cooled.
- Analogy: start with a high "temperature": a high tendency to take random steps
- Over time, cool down: more likely to follow the gradient
- Here's how it works:
 - Pick a variable at random and a new value at random.
 - If it is an improvement, adopt it.
 - If it isn't an improvement, adopt it probabilistically depending on a temperature parameter, T.
 - $\bullet\,$ With current node n and proposed node n' we move to n' with probability $e^{(h(n')-h(n))/T}$
 - Temperature reduces over time, according to an annealing schedule

3

・ 回 と ・ ヨ と ・ ヨ と

Tabu lists

• SLS algorithms can get stuck in plateaus (why?)

< 1[™] >

3 ×

Local Search

Tabu lists

- SLS algorithms can get stuck in plateaus (why?)
- To prevent cycling we can maintain a tabu list of the k last nodes visited.
- Don't visit a node that is already on the tabu list.
- If k = 1, we don't allow the search to visit the same assignment twice in a row.
- This method can be expensive if k is large.