Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs

Search Conclusion and CSP Introduction

CPSC 322 Lecture 9

January 23, 2006 Textbook §3.0 – 3.2

Search Conclusion and CSP Introduction

CPSC 322 Lecture 9, Slide 1

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs
Lecture	e Overview				

Recap

Backwards Search

Dynamic Programming

Variables

Constraints

CSPs

æ

< ≣⇒

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs
Branch	-and-Bound	Search Algorith	m		

- Follow exactly the same search path as depth-first search
 - treat the frontier as a stack: expand the most-recently added node first
 - the order in which neighbors are expanded can be governed by some arbitrary node-ordering heuristic
- Keep track of a lower bound and upper bound on solution cost at each node
 - lower bound: LB(n) = cost(n) + h(n)
 - upper bound: UB = cost(n'), where n' is the best solution found so far.
 - \blacktriangleright if no solution has been found yet, set the upper bound to $\infty.$
- ▶ When a node *n* is selected for expansion:
 - if $LB(n) \ge UB$, remove *n* from frontier without expanding it
 - this is called "pruning the search tree" (really!)
 - else expand n, adding all of its neighbours to the frontier

白 と く ヨ と く ヨ と …

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs

Summary of Search Strategies

Strategy	Frontier Selection	Complete?	Space
Depth-first	Last node added	No	Linear
Breadth-first	First node added	Yes	Exp
Lowest-cost-first	Minimal <i>cost</i> (<i>n</i>)	Yes	Exp
Best-first	Global min $h(n)$	No	Exp
A*	Minimal $f(n)$	Yes	Exp
Branch-and-Bound	Last node added, with pruning	No	Linear

 Recap
 Backwards Search
 Dynamic Programming
 Variables
 Constraints
 CSPs

 Other A* Enhancements

The main problem with A^* is that it uses exponential space. Branch and bound was one way around this problem. Two others are:

- Iterative deepening
- Memory-bounded A*

< ∃ >

What can we prune besides nodes that are ruled out by our heuristic?

- Cycles
 - this one is really easy
- Multiple paths to the same node
 - if we want to maintain optimality, either keep the shortest path, or ensure that we always find the shortest path first

- The definition of searching is symmetric: find path from start nodes to goal node or from goal node to start nodes.
 - Of course, this presumes an explicit goal node, not a goal test.
 - Also, when the graph is dynamically constructed, it can sometimes be impossible to construct the backwards graph
- **Forward branching factor**: number of arcs out of a node.
- **Backward branching factor**: number of arcs into a node.
- Search complexity is bⁿ. Should use forward search if forward branching factor is less than backward branching factor, and vice versa.

A B K A B K

- You can search backward from the goal and forward from the start simultaneously.
- This wins as 2b^{k/2} « b^k. This can result in an exponential saving in time and space.
 - The main problem is making sure the frontiers meet.
 - This is often used with one breadth-first method that builds a set of locations that can lead to the goal. In the other direction another method can be used to find a path to these interesting locations.

▶ < 문 ▶ < 문 ▶</p>

Idea: for statically stored graphs, build a table of dist(n) the actual distance of the shortest path from node n to a goal. This can be built backwards from the goal:

$$dist(n) = \begin{cases} 0 & \text{if } is_goal(n), \\ \min_{\langle n,m\rangle \in \mathcal{A}}(|\langle n,m\rangle| + dist(m)) & \text{otherwise.} \end{cases}$$

This can be used locally to determine what to do. There are two main problems:

- > You need enough space to store the graph.
- ► The *dist* function needs to be recomputed for each goal.

Complexity: polynomial in the size of the graph.

4 E K 4 E K

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs
States a	and Features				

- In practical problems, there are usually too many states to reason about explicitly
- ▶ However, the states usually have some internal structure
 - this is why people can understand the problem in the first place!
- Features: a set of variables that together define the state of the world
- Many states can be described using few features:
 - 10 binary features \Rightarrow 1,024 states
 - 20 binary features \Rightarrow 1,048,576 states
 - ▶ 30 binary features \Rightarrow 1,073,741,824 states
 - ► 100 binary features ⇒ 1,267,650,600,228,229,401,496,703,205,376 states

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs
Variabl	es				

- So, we define the state of the world as an assignment of values to a set of variables
 - variable: a synonym for feature
 - we denote variables using capital letters
 - each variable V has a domain dom(V) of possible values
- Variables can be of several main kinds:
 - Boolean: |dom(V)| = 2
 - Finite: the domain contains a finite number of values
 - Infinite but Discrete: the domain is countably infinite
 - Continuous: e.g., real numbers between 0 and 1
- We'll call the set of states that are induced by a set of variables the set of possible worlds

白マ イヨマ イヨマ

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs
Syntax	and Semant	ics			

- Syntax: the symbols that are manipulated by the computer, and the rules that are used to perform the manipulation
- Semantics: the meaning assigned to the symbols by the system designer
 - for example, the variable *black_queen_location* might correspond to the location on the chessboard of the black queen
- Important point: the computer only works at the syntactic level
 - it doesn't understand what the symbols mean!
 - things that seem obvious to us must be made explicit

Image: A image: A

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs
Examp	les				

Crossword Puzzle:

- variables are words that have to be filled in
- domains are English words of the correct length
- possible worlds: all ways of assigning words

Crossword 2:

- variables are cells (individual squares)
- domains are letters of the alphabet
- possible worlds: all ways of assigning letters to cells

Sudoku

- variables are cells
- domains are numbers between 1 and 9
- possible worlds: all ways of assigning numbers to cells

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs
More E	Examples				

- Scheduling Problem:
 - variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
 - domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
 - possible worlds: time/location assignments for each task
- n-Queens problem
 - variable: location of a queen on a chess board
 - there are n of them in total, hence the name
 - domains: grid coordinates
 - possible worlds: locations of all queens

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs
Constra	aints				

Constraints are restrictions on the values that one or more variables can take

- Unary constraint: restriction involving a single variable
 - of course, we could also achieve the same thing by using a smaller domain in the first place
- k-ary constraint: restriction involving the domains of k different variables
 - it turns out that k-ary constraints can always be represented as binary constraints, so we'll often talk about this case
- Constraints can be specified by
 - giving a list of valid domain values for each variable participating in the constraint
 - giving a function that returns true when given values for each variable which satisfy the constraint

A possible world satisfies a set of constraints if the set of variables involved in each constraint take values that are consistent with that constraint

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs
Examp	les				

Crossword Puzzle:

- variables are words that have to be filled in
- domains are valid English words
- constraints: words have the same letters at points where they intersect

Crossword 2:

- variables are cells (individual squares)
- domains are letters of the alphabet
- constraints: sequences of letters form valid English words

Sudoku

- variables are cells
- domains are numbers between 1 and 9
- constraints: rows, columns, boxes contain all different numbers

4 B M 4 B M

Recap	Backwards Search	Dynamic Programming	Variables	Constraints	CSPs
More Examples					

Scheduling Problem:

- variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
- domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
- constraints: tasks can't be scheduled in the same location at the same time; certain tasks can't be scheduled in different locations at the same time; some tasks must come earlier than others; etc.
- n-Queens problem
 - variable: location of a queen on a chess board
 - domains: grid coordinates
 - constraints: no queen can attack another

A constraint satisfaction problem consists of:

- a set of variables
- a domain for each variable
- a set of constraints

Model: an assignment of values to variables that satisfies all of the constraints

We may want to solve the following problems with a CSP:

- determine whether or not a model exists
- find a model
- find all of the models
- count the number of models
- find the best model, given some measure of model quality
 - this is now an optimization problem
- determine whether some property of the variables holds in all models

It turns out that the general CSP problem with finite domains is \mathcal{NP} -hard, so we can't hope to find an efficient algorithm. However, we can try to:

- find algorithms that are fast on "typical" cases
- identify special cases for which algorithms are efficient
- find approximation algorithms that can find good solutions quickly, even they may offer no theoretical guarantees
- develop parallel or distributed algorithms so that additional hardware can be used