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A∗ Search Algorithm

I A∗ is a mix of lowest-cost-first and Best-First search.

I It treats the frontier as a priority queue ordered by f (p).

I It always selects the node on the frontier with the lowest
estimated total distance.
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Analysis of A∗

Let’s assume that arc costs are strictly positive.

I Completeness: yes.
I Time complexity: O(bm)

I the heuristic could be completely uninformative and the edge
costs could all be the same, meaning that A∗ does the same
thing as BFS

I Space complexity: O(bm)
I like BFS, A∗ maintains a frontier which grows with the size of

the tree

I Optimality: yes.
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Optimal Efficiency of A∗

I In fact, we can prove something even stronger about A∗: in a
sense (given the particular heuristic that is available) no
search algorithm could do better!

I Optimal Efficiency: Among all optimal algorithms that start
from the same start node and use the same heuristic h, A∗

expands the minimal number of nodes.
I problem: A∗ could be unlucky about how it breaks ties.
I So let’s define optimal efficiency as expanding the minimal

number of nodes n for which f (n) < f ∗, where f ∗ is the cost
of the shortest path.
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Why is A∗ optimally efficient?

Theorem
A∗ is optimally efficient.

I Let f ∗ be the cost of the shortest path to a goal. Consider any
algorithm A′ which has the same start node as A∗, uses the same
heuristic and fails to expand some node n′ expanded by A∗ for which
cost(n′) + h(n′) < f ∗. Assume that A’ is optimal.

I Consider a different search problem which is identical to the original
and on which h returns the same estimate for each node, except that
n′ has a child node n′′ which is a goal node, and the true cost of the
path to n′′ is f (n′).

I that is, the edge from n′ to n′′ has a cost of h(n′): the heuristic is
exactly right about the cost of getting from n′ to a goal.

I A′ would behave identically on this new problem.
I The only difference between the new problem and the original problem

is beyond node n′, which A′ does not expand.

I Cost of the path to n′′ is lower than cost of the path found by A′.
I This violates our assumption that A′ is optimal.
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Branch-and-Bound Search

I A search strategy often not covered in AI, but widely used in
practice

I Uses a heuristic function: like A∗, can avoid expanding some
unnecessary nodes

I Depth-first: modest memory demands
I in fact, some people see “branch and bound” as a broad family

that includes A∗

I these people would use the term “depth-first branch and
bound”
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Branch-and-Bound Search Algorithm

I Follow exactly the same search path as depth-first search
I treat the frontier as a stack: expand the most-recently added

node first
I the order in which neighbors are expanded can be governed by

some arbitrary node-ordering heuristic

I Keep track of a lower bound and upper bound on solution
cost at each node

I lower bound: LB(n) = cost(n) + h(n)
I upper bound: UB = cost(n′), where n′ is the best solution

found so far.
I if no solution has been found yet, set the upper bound to ∞.

I When a node n is selected for expansion:
I if LB(n) ≥ UB, remove n from frontier without expanding it

I this is called “pruning the search tree” (really!)

I else expand n, adding all of its neighbours to the frontier
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Branch-and-Bound Analysis

I Completeness: no, for the same reasons that DFS isn’t
complete

I however, for many problems of interest there are no infinite
paths and no cycles

I hence, for many problems B&B is complete

I Time complexity: O(bm)
I Space complexity: O(bm)

I Branch & Bound has the same space complexity as DFS
I this is a big improvement over A∗!

I Optimality: yes.

Search: Advanced Topics and Conclusion CPSC 322 Lecture 8, Slide 9



Recap Branch & Bound A∗ Tricks Other Pruning

Other A∗ Enhancements

The main problem with A∗ is that it uses exponential space.
Branch and bound was one way around this problem. Are there
others?

I Iterative deepening

I Memory-bounded A∗
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Iterative Deepening

I B & B can still get stuck in cycles
I Search depth-first, but to a fixed depth

I if you don’t find a solution, increase the depth tolerance and
try again

I of course, depth is measured in f value

I Counter-intuitively, the asymptotic complexity is not changed,
even though we visit nodes multiple times
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Memory-bounded A∗

I Iterative deepening and B & B use a tiny amount of memory

I what if we’ve got more memory to use?

I keep as much of the fringe in memory as we can
I if we have to delete something:

I delete the oldest paths
I “back them up” to a common ancestor
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Non-heuristic pruning

What can we prune besides nodes that are ruled out by our
heuristic?

I Cycles

I Multiple paths to the same node
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Cycle Checking

�

s

I You can prune a path that ends in a node already on the
path. This pruning cannot remove an optimal solution.

I Using depth-first methods, with the graph explicitly stored,
this can be done in constant time.

I For other methods, the cost is linear in path length.
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Multiple-Path Pruning

�

s

I You can prune a path to node n that you have already found
a path to.

I Multiple-path pruning subsumes a cycle check.

I This entails storing all nodes you have found paths to.
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?

I You can remove all paths from the frontier that use the longer
path.

I You can change the initial segment of the paths on the
frontier to use the shorter path.

I You can ensure this doesn’t happen. You make sure that the
shortest path to a node is found first.

I Heuristic function h satisfies the monotone restriction if
|h(m) − h(n)| ≤ d(m, n) for every arc 〈m, n〉.

I If h satisfies the monotone restriction, A∗ with multiple path
pruning always finds the shortest path to a goal.
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