
Recap Searching Depth-First Search Breadth-First Search Search with Costs

Uninformed Search

CPSC 322 Lecture 5

January 13, 2006
Textbook §2.4

Uninformed Search CPSC 322 Lecture 5, Slide 1

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Lecture Overview

Recap

Searching

Depth-First Search

Breadth-First Search

Search with Costs

Uninformed Search CPSC 322 Lecture 5, Slide 2

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Search

I What we want to be able to do:
I find a solution when we are not given an algorithm to solve a

problem, but only a specification of what a solution looks like
I idea: search for a solution

I What we need:
I A set of states
I A start state
I A goal state or set of goal states

I or, equivalently, a goal test: a boolean function which tells us
whether a given state is a goal state

I A set of actions
I An action function: a mapping from a state and an action to a

new state

Uninformed Search CPSC 322 Lecture 5, Slide 3

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Search Graphs

I A graph consists of
I a set N of nodes;
I a set A of ordered pairs of nodes, called arcs or edges.

I Node n2 is a neighbor of n1 if there is an arc from n1 to n2.
I i.e., if 〈n1, n2〉 ∈ A

I A path is a sequence of nodes 〈n0, n1, . . . , nk〉 such that
〈ni−1, ni 〉 ∈ A.

I Given a start node and a set of goal nodes, a solution is a
path from the start node to a goal node.

Uninformed Search CPSC 322 Lecture 5, Slide 4

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Problem Solving by Graph Searching

frontier

explored nodes

unexplored nodes

start
node

Uninformed Search CPSC 322 Lecture 5, Slide 5

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Graph Search Algorithm

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;
if goal(nk)

return 〈n0, . . . , nk〉;
for every neighbor n of nk

add 〈n0, . . . , nk , n〉 to frontier ;
end while

I After the algorithm returns, it can be asked for more answers and the
procedure continues.

I Which value is selected from the frontier defines the search strategy.

I The neighbor relationship defines the graph.

I The goal function defines what is a solution.

Uninformed Search CPSC 322 Lecture 5, Slide 6

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Branching Factor

I The forward branching factor of a node is the number of arcs
going out of that node

I The backward branching factor of a node is the number of
arcs going into the node

I If the forward branching factor of every node is b and the
graph is a tree, how many nodes are exactly n steps away
from the start node?

I bn nodes.

I We’ll assume that all branching factors are finite.

Uninformed Search CPSC 322 Lecture 5, Slide 7

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Comparing Algorithms

I Completeness
I if at least one solution exists, the algorithm is guaranteed to

find a solution within a finite amount of time

I Time Complexity
I in terms of the maximum path length m, and the maximum

branching factor b, what is the worst-case amount of time that
the algorithm will take to run?

I Space Complexity
I in terms of m and b, what is the worst-case amount of

memory that the algorithm must use?

Uninformed Search CPSC 322 Lecture 5, Slide 8

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Depth-first Search

I Depth-first search treats the frontier as a stack

I It always selects one of the last elements added to the frontier.

I Example:
I the frontier is [p1, p2, . . . , pr]
I neighbours of p1 are {n1, . . . , nk}

I What happens?
I p1 is selected, and tested for being a goal.
I Neighbours of p1 replace p1 at the beginning of the frontier.
I Thus, the frontier is now [n1, . . . , nk , p2, . . . , pr].
I p2 is only selected when all paths from p1 have been explored.

Uninformed Search CPSC 322 Lecture 5, Slide 9

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Illustrative Graph — Depth-first Search

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

Uninformed Search CPSC 322 Lecture 5, Slide 10

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Analysis of Depth-first Search

I Is DFS complete?
I Depth-first search isn’t guaranteed to halt on infinite graphs or

on graphs with cycles.
I However, DFS is complete for finite trees.

I What is the time complexity, if the maximum path length is
m and the maximum branching factor is b?

I The time complexity is O(bm): must examine every node in
the tree.

I Search is unconstrained by the goal until it happens to stumble
on the goal.

I What is the space complexity?
I Space complexity is O(bm): the longest possible path is m,

and for every node in that path must maintain a fringe of size
b.

Uninformed Search CPSC 322 Lecture 5, Slide 11

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Using Depth-First Search

I When is DFS appropriate?
I space is restricted
I solutions tend to occur at the same depth in the tree
I you know how to order nodes in the list of neighbours so that

solutions will be found relatively quickly

I When is DFS inappropriate?
I some paths have infinite length
I the graph contains cycles
I some solutions are very deep, while others are very shallow

Uninformed Search CPSC 322 Lecture 5, Slide 12

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Breadth-first Search

I Breadth-first search treats the frontier as a queue
I it always selects one of the earliest elements added to the

frontier.

I Example:
I the frontier is [p1, p2, . . . , pr]
I neighbours of p1 are {n1, . . . , nk}

I What happens?
I p1 is selected, and tested for being a goal.
I Neighbours of p1 follow pr at the end of the frontier.
I Thus, the frontier is now [p2, . . . , pr , n1, . . . , nk].
I p2 is selected next.

Uninformed Search CPSC 322 Lecture 5, Slide 13

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Illustrative Graph — Breadth-first Search

1

2 3

4 5 6 7

8 9 10 11 12 13 14

15 16

Uninformed Search CPSC 322 Lecture 5, Slide 14

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Analysis of Breadth-First Search

I Is BFS complete?
I Yes (but it wouldn’t be if the branching factor for any node

was infinite)
I In fact, BFS is guaranteed to find the path that involves the

fewest arcs (why?)

I What is the time complexity, if the maximum path length is
m and the maximum branching factor is b?

I The time complexity is O(bm): must examine every node in
the tree.

I The order in which we examine nodes (BFS or DFS) makes no
difference to the worst case: search is unconstrained by the
goal.

I What is the space complexity?
I Space complexity is O(bm): we must store the whole frontier

in memory

Uninformed Search CPSC 322 Lecture 5, Slide 15

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Using Breadth-First Search

I When is BFS appropriate?
I space is not a problem
I it’s necessary to find the solution with the fewest arcs
I although all solutions may not be shallow, at least some are
I there may be infinite paths

I When is BFS inappropriate?
I space is limited
I all solutions tend to be located deep in the tree
I the branching factor is very large

Uninformed Search CPSC 322 Lecture 5, Slide 16

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Search with Costs

I Sometimes there are costs associated with arcs.
I The cost of a path is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k∑

i=1

|〈ni−1, ni 〉|

I In this setting we often don’t just want to find just any
solution

I Instead, we usually want to find the solution that minimizes
cost

I We call a search algorithm which always finds such a solution
optimal

Uninformed Search CPSC 322 Lecture 5, Slide 17

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Lowest-Cost-First Search

I At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

I The frontier is a priority queue ordered by path cost.
I We say “a path” because there may be ties

I When all arc costs are equal, LCFS is equivalent to BFS.
I Example:

I the frontier is [〈p1, 10〉, 〈p2, 5〉, 〈p3, 7〉]
I p2 is the lowest-cost node in the frontier
I neighbours of p2 are {〈p9, 12〉, 〈p10, 15〉}

I What happens?
I p2 is selected, and tested for being a goal.
I Neighbours of p2 are inserted into the frontier (it doesn’t

matter where they go)
I Thus, the frontier is now [〈p1, 10〉, 〈p9, 12〉, 〈p10, 15〉, 〈p3, 7〉].
I p3 is selected next.
I Of course, we’d really implement this as a priority queue.

Uninformed Search CPSC 322 Lecture 5, Slide 18

Recap Searching Depth-First Search Breadth-First Search Search with Costs

Analysis of Lowest-Cost-First Search

I Is LCFS complete?
I not in general: a cycle with zero or negative arc costs could be

followed forever.
I yes, as long as arc costs are strictly positive

I What is the time complexity, if the maximum path length is
m and the maximum branching factor is b?

I The time complexity is O(bm): must examine every node in
the tree.

I Knowing costs doesn’t help here.
I What is the space complexity?

I Space complexity is O(bm): we must store the whole frontier
in memory.

I Is LCFS optimal?
I Not in general. Why not?
I Arc costs could be negative: a path that initially looks

high-cost could end up getting a “refund”.
I However, LCFS is optimal if arc costs are guaranteed to be

non-negative.
Uninformed Search CPSC 322 Lecture 5, Slide 19

	Recap
	Searching
	Depth-First Search
	Breadth-First Search
	Search with Costs

