Decision Theory: Markov Decision Processes

CPSC 322 Lecture 33

March 31, 2006 Textbook $\S12.5$

Decision Theory: Markov Decision Processes

CPSC 322 Lecture 33, Slide 1

<= E ► < E ►

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration

Decision Theory: Markov Decision Processes

3

Markov Decision Processes

A Markov decision process augments a stationary Markov chain with actions and values:

個 と く ヨ と く ヨ と

Markov Decision Processes

An MDP is defined by:

- ▶ set S of states.
- set A of actions.
- $P(S_{t+1}|S_t, A_t)$ specifies the dynamics.
- ▶ $R(S_t, A_t, S_{t+1})$ specifies the reward. The agent gets a reward at each time step (rather than just a final reward).
 - ► R(s, a, s') is the reward received when the agent is in state s, does action a and ends up in state s'.

▲ 周 ▶ | ▲ 国 ▶ ||||

Value Iteration

Example: Simple Grid World

- Actions: up, down, left, right.
- 100 states corresponding to the positions of the robot.
- Robot goes in the commanded direction with probability 0.7, and one of the other directions with probability 0.1.
- ► If it crashes into an outside wall, it remains in its current position and has a reward of -1.
- Four special rewarding states; the agent gets the reward when leaving.

2

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Planning Horizons

The planning horizon is how far ahead the planner looks to make a decision.

- ► The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - infinite horizon
- ► The robot gets +10 or +3 entering the state, then it stays there getting no reward. These are absorbing states.
 - The robot will eventually reach the absorbing state.
 - indefinite horizon

伺 ト イヨト イヨト

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration

Decision Theory: Markov Decision Processes

æ

イロン イヨン イヨン イヨン

Rewards and Values

Suppose the agent receives the sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ What value should be assigned?

▶ total reward
$$V = \sum_{i=1}^{\infty} r_i$$

▶ average reward $V = \lim_{n \to \infty} \frac{r_1 + \dots + r_n}{n}$

- discounted reward $V = \sum_{i=1}^{\infty} \gamma^{i-1} r_i$
 - γ is the discount factor

•
$$0 \le \gamma \le 1$$

Decision Theory: Markov Decision Processes

3

注入 不注入 …

Recap	Rewards and Policies	Value Iteration	Asynchronous Value Iteration
Policies			

• A stationary policy is a function:

$$\pi:S\to A$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

An optimal policy is one with maximum expected value

- we'll focus on the case where value is defined as discounted reward.
- For an MDP with stationary dynamics and rewards with infinite or indefinite horizon, there is always an optimal stationary policy in this case.

- ► $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π .
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V^{\pi}(s') \right)$$

(4月) (日) (日) 日

- ► Q^{*}(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- ► V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^{*}(s, a) = \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V^{*}(s') \right)$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$\pi^{*}(s) = \arg\max_{a} Q^{*}(s, a)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration

Decision Theory: Markov Decision Processes

3

→ 문 → < 문 →</p>

Image: A matrix

Recap	Rewards and Policies	Value Iteration	Asynchronous Value Iteration
Value Ite	eration		

- Idea: Given an estimate of the k-step lookahead value function, determine the k + 1 step lookahead value function.
- Set V₀ arbitrarily.
 - e.g., zeros
- Compute Q_{i+1} and V_{i+1} from V_i :

$$Q_{i+1}(s,a) = \sum_{s'} P(s'|a,s) \left(r(s,a,s') + \gamma V_i(s') \right)$$
$$V_{i+1}(s) = \max_{a} Q_{i+1}(s,a)$$

► If we intersect these equations at Q_{i+1}, we get an update equation for V:

$$V_{i+1}(s) = \max_{a} \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V_i(s') \right)$$

Pseudocode for Value Iteration

```
procedure value_iteration(P, r, \theta)
```

inputs:

```
P is state transition function specifying P(s'|a, s)
```

```
r is a reward function R(s, a, s')
```

 θ a threshold $\theta > 0$

returns:

 $\pi[s]$ approximately optimal policy

V[s] value function

data structures:

 $V_k[s]$ a sequence of value functions

begin

```
for k = 1 : \infty
for each state s
V_k[s] = \max_a \sum_{s'} P(s'|a, s)(R(s, a, s') + \gamma V_{k-1}[s'])
if \forall s | V_k(s) - V_{k-1}(s) | < \theta
for each state s
\pi(s) = \arg \max_a \sum_{s'} P(s'|a, s)(R(s, a, s') + \gamma V_{k-1}[s'])
return \pi, V_k
```

end

米部 米油 米油 米油 とう

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration

Decision Theory: Markov Decision Processes

CPSC 322 Lecture 33, Slide 15

★ 문 ► ★ 문 ►

< 17 b

Asynchronous Value Iteration

- You don't need to sweep through all the states, but can update the value functions for each state individually.
 - This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.
- You can either store V[s] or Q[s, a].
- This algorithm forms the basis of several reinforcement learning algorithms
 - how should an agent behave in an MDP if it doesn't know the transition probabilities and the reward function?

(4) (2) (4) (2) (4)

Asynchronous VI: storing Q[s, a]

- Repeat forever:
 - Select state s, action a;

$$\blacktriangleright Q[s,a] \leftarrow \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma \max_{a'} Q[s',a'] \right)$$

< 注→ < 注→

< 67 ▶

Pseudocode for Asynchronous Value Iteration

```
procedure asynchronous_value_iteration(P, r)
```

inputs:

```
P is state transition function specifying P(s'|a, s)
```

```
r is a reward function R(s, a, s')
```

returns:

 π approximately optimal policy

Q value function

data structures:

```
real array Q[s, a]
```

```
action array \pi[s]
```

begin

repeat

```
select a state s
```

select an action a

$$Q[s, a] = \sum_{s'} P(s'|a, s) (R(s, a, s') + \gamma \max_{a'} Q[s', a'])$$

until some stopping criteria is true

for each state s

```
\pi[s] = \arg\max_a Q[s, a]
```

```
return \pi, Q
```

end

3

▲□ → ▲ □ → ▲ □ → …