
Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Decision Theory: Markov Decision Processes

CPSC 322 Lecture 33

March 31, 2006
Textbook §12.5

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Lecture Overview

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 2

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Markov Decision Processes

I A Markov decision process augments a stationary Markov
chain with actions and values:

S0 S1 S3S2

A0 A1 A2

R1 R2 R3

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 3

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Markov Decision Processes

An MDP is defined by:

I set S of states.

I set A of actions.

I P (St+1|St, At) specifies the dynamics.
I R(St, At, St+1) specifies the reward. The agent gets a reward

at each time step (rather than just a final reward).
I R(s, a, s′) is the reward received when the agent is in state s,

does action a and ends up in state s′.

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 4

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Example: Simple Grid World

+10-10

-5-1

-1

-1

-1

+3

I Actions: up, down, left, right.

I 100 states corresponding to the
positions of the robot.

I Robot goes in the commanded
direction with probability 0.7, and
one of the other directions with
probability 0.1.

I If it crashes into an outside wall, it
remains in its current position and
has a reward of −1.

I Four special rewarding states; the
agent gets the reward when
leaving.

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 5

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Planning Horizons

The planning horizon is how far ahead the planner looks to make a
decision.

I The robot gets flung to one of the corners at random after
leaving a positive (+10 or +3) reward state.

I the process never halts
I infinite horizon

I The robot gets +10 or +3 entering the state, then it stays
there getting no reward. These are absorbing states.

I The robot will eventually reach the absorbing state.
I indefinite horizon

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 6

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Lecture Overview

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 7

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Rewards and Values

Suppose the agent receives the sequence of rewards
r1, r2, r3, r4, What value should be assigned?

I total reward V =
∞∑
i=1

ri

I average reward V = lim
n→∞

r1 + · · ·+ rn

n

I discounted reward V =
∑∞

i=1 γi−1ri

I γ is the discount factor
I 0 ≤ γ ≤ 1

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 8

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Policies

I A stationary policy is a function:

π : S → A

Given a state s, π(s) specifies what action the agent who is
following π will do.

I An optimal policy is one with maximum expected value
I we’ll focus on the case where value is defined as discounted

reward.

I For an MDP with stationary dynamics and rewards with
infinite or indefinite horizon, there is always an optimal
stationary policy in this case.

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 9

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Value of a Policy

I Qπ(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following policy π.

I V π(s), where s is a state, is the expected value of following
policy π in state s.

I Qπ and V π can be defined mutually recursively:

V π(s) = Qπ(s, π(s))

Qπ(s, a) =
∑
s′

P (s′|a, s)
(
r(s, a, s′) + γV π(s′)

)

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 10

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Value of the Optimal Policy

I Q∗(s, a), where a is an action and s is a state, is the expected
value of doing a in state s, then following the optimal policy.

I V ∗(s), where s is a state, is the expected value of following
the optimal policy in state s.

I Q∗ and V ∗ can be defined mutually recursively:

Q∗(s, a) =
∑
s′

P (s′|a, s)
(
r(s, a, s′) + γV ∗(s′)

)
V ∗(s) = max

a
Q∗(s, a)

π∗(s) = arg max
a

Q∗(s, a)

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 11

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Lecture Overview

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 12

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Value Iteration

I Idea: Given an estimate of the k-step lookahead value
function, determine the k + 1 step lookahead value function.

I Set V0 arbitrarily.
I e.g., zeros

I Compute Qi+1 and Vi+1 from Vi:

Qi+1(s, a) =
∑
s′

P (s′|a, s)
(
r(s, a, s′) + γVi(s′)

)
Vi+1(s) = max

a
Qi+1(s, a)

I If we intersect these equations at Qi+1, we get an update
equation for V :

Vi+1(s) = max
a

∑
s′

P (s′|a, s)
(
r(s, a, s′) + γVi(s′)

)
Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 13

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Pseudocode for Value Iteration
432 CHAPTER 12. PLANNING UNDER UNCERTAINTY

procedure value_iteration(P, r, θ)

inputs:
P is state transition function specifying P(s′|a, s)
r is a reward function R(s, a, s′)
θ a threshold θ > 0

returns:
π [s] approximately optimal policy
V [s] value function

data structures:
Vk[s] a sequence of value functions

begin
for k = 1 :∞

for each state s
Vk[s] = maxa

∑
s′ P(s′|a, s)(R(s, a, s′)+ γ Vk−1[s′])

if ∀s |Vk(s)− Vk−1(s)| < θ

for each state s
π(s) = arg maxa

∑
s′ P(s′|a, s)(R(s, a, s′)+ γ Vk−1[s′])

return π, Vk

end

Figure 12.13: Value Iteration for Markov Decision Processes, storing V

Value Iteration

Value iteration is a method of computing the optimal policy and the optimal value
of a Markov decision process.

In value iteration, you start at the “end” and then work backwards refining an
estimate of either Q∗ or V∗. There is really no end, so you start anywhere. You
can recursively define the k-stages to go value function, Vk and the k-stages to go Q-
function, Qk . You start with an arbitrary function V0 and use the following equations

Q∗k+1(s, a) =
∑

s′
P(s′|a, s)(R(s, a, s′)+ γ V∗k (s′)) for k ≥ 0

V∗k (s) = max
a

Qk(s, a) for k > 0

You can either save the V array or the Q array. Saving the V array results in less
storage, but it is more difficult to determine the optimal action, and one more iteration
is needed to determine which action results in the greatest value.

Figure 12.13 shows the value iteration algorithm when the V array is stored. This
procedure converges no matter what V0 is. A value function that approximates V∗

Computational Intelligence, 2nd Edition, draft of March 27, 2006

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 14

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Lecture Overview

Recap

Rewards and Policies

Value Iteration

Asynchronous Value Iteration

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 15

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Asynchronous Value Iteration

I You don’t need to sweep through all the states, but can
update the value functions for each state individually.

I This converges to the optimal value functions, if each state
and action is visited infinitely often in the limit.

I You can either store V [s] or Q[s, a].
I This algorithm forms the basis of several reinforcement

learning algorithms
I how should an agent behave in an MDP if it doesn’t know the

transition probabilities and the reward function?

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 16

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Asynchronous VI: storing Q[s, a]

I Repeat forever:
I Select state s, action a;
I Q[s, a]←

∑
s′

P (s′|s, a)
(
R(s, a, s′) + γ max

a′
Q[s′, a′]

)
;

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 17

Recap Rewards and Policies Value Iteration Asynchronous Value Iteration

Pseudocode for Asynchronous Value Iteration
12.5. DECISION PROCESSES 433

procedure asynchronous_value_iteration(P, r)
inputs:

P is state transition function specifying P(s′|a, s)
r is a reward function R(s, a, s′)

returns:
π approximately optimal policy
Q value function

data structures:
real array Q[s, a]
action array π [s]

begin
repeat

select a state s
select an action a

Q[s, a] =
∑

s′ P(s′|a, s)(R(s, a, s′)+ γ maxa′ Q[s′, a′])
until some stopping criteria is true
for each state s

π [s] = arg maxa Q[s, a]
return π, Q

end

Figure 12.14: Asynchronous Value Iteration for Markov Decision Processes

converges quicker than one that does not. The basis for many abstraction techniques
for MDPs is to use some heuristic method to approximate V∗, and to use this as a seed
for value iteration.

A common refinement of this algorithm is asynchronous value iteration. This
converges faster and uses less space than value iteration and is the basis of some of
the algorithms of reinforcement learning (see Section 15.3 on page 492). The idea
behind asynchronous value iteration is that you don’t need to sweep though the states
to create a new value function, but you can update the states one at a time in any order
and store the values in a single array (the algorithm of Figure 12.13 on the preceding
page has an array for each stage). This algorithm lets you select states in any order,
and does not force you to sweep through the states. You can either store the Q[s, a]
array or the V [s] array. Figure 12.14 shows asynchronous value iteration when the Q
array is stored.

You could also implement asynchronous value iteration storing just the V [s] array.

©Poole, Mackworth and Goebel, 2006

Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 18

	Recap
	Rewards and Policies
	Value Iteration
	Asynchronous Value Iteration

