Decision Theory: Single Decisions

CPSC 322 Lecture 31

March 27, 2006
Textbook §12.2

Lecture Overview

Recap

Decision Problems

Single Decisions

Decisions Under Uncertainty

- An agent's decision will depend on:

1. what actions are available
2. what beliefs the agent has

- note: this replaces "state" from the deterministic setting

3. the agent's goals

- a richer notion of goals: rating how happy the agent is in different situations

Preferences Over Outcomes

If o_{1} and o_{2} are outcomes

- $o_{1} \succeq o_{2}$ means o_{1} is at least as desirable as o_{2}.
- read this as "the agent weakly prefers o_{1} to o_{2} "
- $o_{1} \sim o_{2}$ means $o_{1} \succeq o_{2}$ and $o_{2} \succeq o_{1}$.
- read this as "the agent is indifferent between o_{1} and o_{2}."
- $o_{1} \succ o_{2}$ means $o_{1} \succeq o_{2}$ and $o_{2} \nsucceq o_{1}$
- read this as "the agent strictly prefers o_{1} to o_{2} "

Lotteries

- An agent may not know the outcomes of his actions, but may instead only have a probability distribution over the outcomes.
- A lottery is a probability distribution over outcomes. It is written

$$
\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right]
$$

where the o_{i} are outcomes and $p_{i}>0$ such that

$$
\sum_{i} p_{i}=1
$$

- The lottery specifies that outcome o_{i} occurs with probability p_{i}.
- We will consider lotteries to be outcomes.

Preference Axioms

1. Completeness
2. Transitivity
3. Monotonicity
4. Continuity
5. Decomposability
6. Substitutivity

Utility

If preferences satisfy the preceding axioms, then preferences can be measured by a function

$$
U: \text { outcomes } \rightarrow[0,1]
$$

such that

1. $o_{1} \succeq o_{2}$ if and only if $U\left(o_{1}\right) \geq U(o 2)$.
2. Utilities are linear with probabilities:

$$
\begin{aligned}
& U\left(\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right]\right) \\
& \quad=\sum_{i=1}^{k} p_{i} \times U\left(o_{i}\right)
\end{aligned}
$$

Lecture Overview

Recap

Decision Problems

Single Decisions

Decision Variables

- Decision variables are like random variables that an agent gets to choose the value of.
- A possible world specifies the value for each decision variable and each random variable.
- For each assignment of values to all decision variables, the measures of the worlds satisfying that assignment sum to 1 .
- The probability of a proposition is undefined unless you condition on the values of all decision variables.

Decision Tree for Delivery Robot

- The robot can choose to wear pads to protect itself or not.
- The robot can choose to go the short way past the stairs or a long way that reduces the chance of an accident.
- There is one random variable indicating whether there is an accident.

Utility

- Utility: a measure of desirability of worlds to an agent.
- Let U be a real-valued function such that $U(\omega)$ represents an agent's degree of preference for world ω.
- Simple goals can be specified by a boolean utility function:
- worlds that satisfy the goal have utility 1
- other worlds have utility 0
- Often utilities are more complicated. For example, in the delivery robot domain:
- some function of the amount of damage to a robot
- how much energy is left
- what goals are achieved
- how much time it has taken.

Expected Utility

- The expected value of a function of possible worlds is its average value, weighting possible worlds by their probability.
- Suppose $U(w)$ is the utility of world world w.
- The expected utility is

$$
\mathcal{E}(U)=\sum_{\omega \in \Omega} P(\omega) \times U(\omega) .
$$

- The conditional expected utility given e is

$$
\mathcal{E}(U \mid e)=\sum_{\omega \models e} P(\omega \mid e) \times U(\omega) .
$$

Lecture Overview

Recap

Decision Problems

Single Decisions

Single decisions

- Given a single decision variable, the agent can choose $D=d_{i}$ for any $d_{i} \in \operatorname{dom}(D)$.
- The expected utility of decision $D=d_{i}$ is $\mathcal{E}\left(U \mid D=d_{i}\right)$.
- An optimal single decision is the decision $D=d_{\max }$ whose expected utility is maximal:

$$
d_{\max }=\underset{d_{i} \in \operatorname{dom}(D)}{\arg \max } \mathcal{E}\left(U \mid D=d_{i}\right)
$$

Single-stage decision networks

Extend belief networks with:

- Decision nodes, that the agent chooses the value for. Domain is the set of possible actions. Drawn as rectangle.
- Utility node, the parents are the variables on which the utility depends. Drawn as a diamond.

This shows explicitly which nodes affect whether there is an accident.

Finding the optimal decision

- Suppose the random variables are X_{1}, \ldots, X_{n}, and utility depends on $X_{i_{1}}, \ldots, X_{i_{k}}$

$$
\begin{aligned}
\mathcal{E}(U \mid D) & =\sum_{X_{1}, \ldots, X_{n}} P\left(X_{1}, \ldots, X_{n} \mid D\right) \times U\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \\
& =\sum_{X_{1}, \ldots, X_{n}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right) \times U\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
\end{aligned}
$$

Finding the optimal decision

- Suppose the random variables are X_{1}, \ldots, X_{n}, and utility depends on $X_{i_{1}}, \ldots, X_{i_{k}}$

$$
\begin{aligned}
\mathcal{E}(U \mid D) & =\sum_{X_{1}, \ldots, X_{n}} P\left(X_{1}, \ldots, X_{n} \mid D\right) \times U\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \\
& =\sum_{X_{1}, \ldots, X_{n}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right) \times U\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
\end{aligned}
$$

To find the optimal decision:

- Create a factor for each conditional probability and for the utility
- Sum out all of the random variables
- This creates a factor on D that gives the expected utility for each D
- Choose the D with the maximum value in the factor.

Example Initial Factors

Which Way	Accident	Probability
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

Which Way	Accident	Wear Pads	Utility
long	true	true	30
long	true	false	0
long	false	true	75
long	false	false	80
short	true	true	35
short	true	false	3
short	false	true	95
short	false	false	100

Example Initial Factors

Which Way	Accident	Probability
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

Which Way	y Accident	Wear Pads	Utility	
long long long long short short short short	true	true	30	
	true	false	0	
	false	true	75	
	false	false	80	
	true	true	35	
	true	false	3	
	false	true	95	
	false	false	100	
	Which Way	Wear pads	Value	
	long long short short	true	$\begin{aligned} & 0.01 * 30+0.99 * 75=74.55 \\ & 0.01 * 0+0.99 * 80=79.2 \\ & 0.2^{*} 35+0.8 * 95=83 \\ & 0.2 * 3+0.8^{*} 100=80.6 \end{aligned}$	
		false		
		true		
		false		

Thus the optimal policy is to take the short way and wear pads, with an expected utility of 83 .

Example Initial Factors

Which Way	Accident	Probability
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

Which Way	y Accident	Wear Pads	Utility	
long long long long short short short short	true	true	30	
	true	false	0	
	false	true	75	
	false	false	80	
	true	true	35	
	true	false	3	
	false	true	95	
	false	false	100	
	Which Way	Wear pads	Value	
	long	true	0.01*30	$+0.99 * 75=74.55$
	long	false	0.01*0+	-0.99*80 $=79.2$
	short	true	0.2* 35	$+0.8 * 95=83$
	short	false	$0.2 * 3+0$.8*100=80.6

Thus the optimal policy is to take the short way and wear pads, with an expected utility of 83 .

