Decision Theory: Single Decisions

CPSC 322 Lecture 31

March 27, 2006 Textbook §12.2

Decision Theory: Single Decisions

CPSC 322 Lecture 31, Slide 1

★ 문 ► ★ 문 ►

A ₽

Lecture Overview

Recap

Decision Problems

Single Decisions

CPSC 322 Lecture 31, Slide 2

æ

イロン 不同と 不同と 不同と

Decision Theory: Single Decisions

Decisions Under Uncertainty

An agent's decision will depend on:

- 1. what actions are available
- 2. what beliefs the agent has
 - note: this replaces "state" from the deterministic setting
- 3. the agent's goals
 - a richer notion of goals: rating how happy the agent is in different situations

A B K A B K

Preferences Over Outcomes

If o_1 and o_2 are outcomes

- $o_1 \succeq o_2$ means o_1 is at least as desirable as o_2 .
 - read this as "the agent weakly prefers o₁ to o₂"
- $o_1 \sim o_2$ means $o_1 \succeq o_2$ and $o_2 \succeq o_1$.
 - ▶ read this as "the agent is indifferent between o_1 and o_2 ."
- $o_1 \succ o_2$ means $o_1 \succeq o_2$ and $o_2 \not\succeq o_1$
 - read this as "the agent strictly prefers o₁ to o₂"

Lotteries

- An agent may not know the outcomes of his actions, but may instead only have a probability distribution over the outcomes.
- A lottery is a probability distribution over outcomes. It is written

$$[p_1:o_1, p_2:o_2, \dots, p_k:o_k]$$

where the o_i are outcomes and $p_i > 0$ such that

$$\sum_{i} p_i = 1$$

- The lottery specifies that outcome o_i occurs with probability p_i.
- We will consider lotteries to be outcomes.

伺 と く き と く き と

Preference Axioms

- 1. Completeness
- 2. Transitivity
- 3. Monotonicity
- 4. Continuity
- 5. Decomposability
- 6. Substitutivity

< ∃⇒

Utility

If preferences satisfy the preceding axioms, then preferences can be measured by a function

$$U: outcomes \rightarrow [0, 1]$$

such that

- 1. $o_1 \succeq o_2$ if and only if $U(o_1) \ge U(o_2)$.
- 2. Utilities are linear with probabilities:

$$U([p_1:o_1, p_2:o_2, \dots, p_k:o_k]) = \sum_{i=1}^{k} p_i \times U(o_i)$$

3

★ 문 ► ★ 문 ►

Lecture Overview

Recap

Decision Problems

Single Decisions

Decision Theory: Single Decisions

æ

Decision Variables

- Decision variables are like random variables that an agent gets to choose the value of.
- A possible world specifies the value for each decision variable and each random variable.
- For each assignment of values to all decision variables, the measures of the worlds satisfying that assignment sum to 1.
- The probability of a proposition is undefined unless you condition on the values of all decision variables.

(3)

Decision Tree for Delivery Robot

- The robot can choose to wear pads to protect itself or not.
- The robot can choose to go the short way past the stairs or a long way that reduces the chance of an accident.
- There is one random variable indicating whether there is an accident.

Utility

- Utility: a measure of desirability of worlds to an agent.
 - \blacktriangleright Let U be a real-valued function such that $U(\omega)$ represents an agent's degree of preference for world $\omega.$
- Simple goals can be specified by a boolean utility function:
 - \blacktriangleright worlds that satisfy the goal have utility 1
 - other worlds have utility 0
- Often utilities are more complicated. For example, in the delivery robot domain:
 - some function of the amount of damage to a robot
 - how much energy is left
 - what goals are achieved
 - how much time it has taken.

伺 と く ヨ と く ヨ と

Expected Utility

- The expected value of a function of possible worlds is its average value, weighting possible worlds by their probability.
- Suppose U(w) is the utility of world world w.
 - The expected utility is

$$\mathcal{E}(U) \quad = \quad \sum_{\omega \in \Omega} P(\omega) \times U(\omega).$$

• The conditional expected utility given e is

$$\mathcal{E}(U|e) = \sum_{\omega \models e} P(\omega|e) \times U(\omega).$$

Decision Theory: Single Decisions

(1) マン・ション・

Lecture Overview

Recap

Decision Problems

Single Decisions

Decision Theory: Single Decisions

æ

(신문) (신문)

< 🗗 🕨

Single decisions

- Given a single decision variable, the agent can choose $D = d_i$ for any $d_i \in dom(D)$.
- The expected utility of decision $D = d_i$ is $\mathcal{E}(U|D = d_i)$.
- ► An optimal single decision is the decision D = d_{max} whose expected utility is maximal:

$$d_{max} = \underset{d_i \in dom(D)}{\arg \max} \mathcal{E}(U|D = d_i).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Single-stage decision networks

Extend belief networks with:

- Decision nodes, that the agent chooses the value for.
 Domain is the set of possible actions. Drawn as rectangle.
- Utility node, the parents are the variables on which the utility depends. Drawn as a diamond.

This shows explicitly which nodes affect whether there is an accident.

Decision Theory: Single Decisions

Finding the optimal decision

► Suppose the random variables are X₁,..., X_n, and utility depends on X_{i1},..., X_{ik}

$$\mathcal{E}(U|D) = \sum_{X_1,\dots,X_n} P(X_1,\dots,X_n|D) \times U(X_{i_1},\dots,X_{i_k})$$
$$= \sum_{X_1,\dots,X_n} \prod_{i=1}^n P(X_i|pX_i) \times U(X_{i_1},\dots,X_{i_k})$$

Decision Theory: Single Decisions

3

・ 回 と ・ ヨ と ・ モ と …

Finding the optimal decision

Suppose the random variables are X_1, \ldots, X_n , and utility depends on X_{i_1}, \ldots, X_{i_k}

$$\mathcal{E}(U|D) = \sum_{X_1,\dots,X_n} P(X_1,\dots,X_n|D) \times U(X_{i_1},\dots,X_{i_k})$$

$$= \sum_{X_1,\dots,X_n} \prod_{i=1}^n P(X_i|pX_i) \times U(X_{i_1},\dots,X_{i_k})$$

To find the optimal decision:

- Create a factor for each conditional probability and for the utility
- Sum out all of the random variables
- ► This creates a factor on *D* that gives the expected utility for each *D*
- ▶ Choose the *D* with the maximum value in the factor.

Example Initial Factors

Accident			Which Way		Accident		Pr	obability
			long		true		0.0)1
Which Way	Utility		long		false		0.9	99
Wear Pads			short		true		0.2	2
inter i tuto			short		false		0.8	3
	Which Way	Ac	cident	Wear	Pads	Utility		
	long	tru	ie	true	true false			
	long	tru	ie	false				
	long fal		se	true		75		
	long	fal	se	false		80		
	short	tru	ie	true		35		
	short	tru	ie	false	3			
	short	fal	se	true		95		
	short	fal	se	false		100		

Decision Theory: Single Decisions

★ 문 ► ★ 문 ►

Image: Image:

Example Initial Factors

	_		Which Way A		Accident		Pro	obability]
Accident		long		true		0.0)1	1	
Which Way	ty 🔰	long		false	e 0.9		99		
Wear Pads		short	true		e 0.2		2		
from T day			short		false		0.8	3	
	Which W	/ay Ac	cident	Wear	Pads	Util	ity		
	long	true		true		30			
long long long short		tru	ie	false		0			
		false false		true	ue				
				false		80			
		tru	le	true		35			
	short	tru	le	false		3			
	short	fal	se	true		95			
	short	fal	se	false		100			
		Which	Way	Wear pa	ads	Value			
		long		true		0.01*	30+	0.99*75=	74.55
Sum out Accident:		long		false		0.01*	01*0+0.99*80=79.2		
		short		true		0.2* 3	35+	0.8*95=	83
		short		false		0.2*3	+0.8	8*100=80).6

Thus the optimal policy is to take the short way and wear pads, with an expected utility of 83. $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle$

Decision Theory: Single Decisions

æ

Example Initial Factors

	_		Which Way A		Accident		Pro	obability]
Accident		long		true		0.0)1	1	
Which Way	ty 🔰	long		false	e 0.9		99		
Wear Pads		short		true		0.2	2		
from T day			short		false		0.8	3	
	Which W	/ay Ac	cident	Wear	Pads	Util	ity		
	long	true		true	true				
long long long short		tru	ie	false		0			
		false		true	true				
		fal	se	false		80			
		tru	ie	true		35			
	short	tru	ie	false		3			
	short	fal	se	true		95			
	short	fal	se	false		100			
		Which	Way	Wear pa	ads	Value			
		long		true		0.01*	30+	0.99*75=	74.55
Sum out Accident:		long		false		0.01*	01*0+0.99*80=79.2		
		short		true		0.2*	35+	0.8*95=	83
		short		false		0.2*3	+0.8	8*100=80).6

Thus the optimal policy is to take the short way and wear pads, with an expected utility of 83. $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle$

Decision Theory: Single Decisions

æ