Decision Theory Intro: Preferences and Utility

CPSC 322 Lecture 29

March 22, 2006
Textbook $\S 9.5$

Lecture Overview

Recap

Decision Theory Intro

Preferences

Utility

Markov chain

- A Markov chain is a special sort of belief network:

- Thus $P\left(S_{t+1} \mid S_{0}, \ldots, S_{t}\right)=P\left(S_{t+1} \mid S_{t}\right)$.
- "The past is independent of the future given the present."
- A stationary Markov chain is when for all $t>0, t^{\prime}>0$, $P\left(S_{t+1} \mid S_{t}\right)=P\left(S_{t^{\prime}+1} \mid S_{t^{\prime}}\right)$.
- We specify $P\left(S_{0}\right)$ and $P\left(S_{t+1} \mid S_{t}\right)$.

Hidden Markov Model

- A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{t+1} \mid S_{t}\right)$ specifies the dynamics
- $P\left(O_{t} \mid S_{t}\right)$ specifies the sensor model

Lecture Overview

Recap
 Decision Theory Intro

Preferences

Utility

Decisions Under Uncertainty

- In the first part of the course we focused on decision making in domains where the environment was understood with certainty
- Search/CSPs: single decisions
- Planning: sequential decisions
- In uncertain domains, we've so far only considered how to represent and update beliefs
- What if an agent has to make decisions in a domain that involves uncertainty?
- this is likely: one of the main reasons to represent the world probabilistically is to be able to use these beliefs as the basis for making decisions

Decisions Under Uncertainty

- An agent's decision will depend on:

1. what actions are available
2. what beliefs the agent has

- note: this replaces "state" from the deterministic setting

3. the agent's goals

- We've spoken quite a lot about (1) and (2).
- today let's consider (3)
- we'll move from all-or-nothing goals to a richer notion: rating how happy the agent is in different situations

Lecture Overview

Recap

Decision Theory Intro

Preferences

Utility

Preferences

- Actions result in outcomes
- Agents have preferences over outcomes
- A rational agent will take the action that leads to the outcome which he most prefers
- Sometimes agents don't know the outcomes of the actions, but they still need to compare actions
- Agents have to act (doing nothing is (often) an action).

Preferences Over Outcomes

If o_{1} and o_{2} are outcomes

- $o_{1} \succeq o_{2}$ means o_{1} is at least as desirable as o_{2}.
- read this as "the agent weakly prefers o_{1} to o_{2} "
- $o_{1} \sim o_{2}$ means $o_{1} \succeq o_{2}$ and $o_{2} \succeq o_{1}$.
- read this as "the agent is indifferent between o_{1} and o_{2}."
- $o_{1} \succ o_{2}$ means $o_{1} \succeq o_{2}$ and $o_{2} \nsucceq o_{1}$
- read this as "the agent strictly prefers o_{1} to o_{2} "

Lotteries

- An agent may not know the outcomes of his actions, but may instead only have a probability distribution over the outcomes.
- A lottery is a probability distribution over outcomes. It is written

$$
\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right]
$$

where the o_{i} are outcomes and $p_{i}>0$ such that

$$
\sum_{i} p_{i}=1
$$

- The lottery specifies that outcome o_{i} occurs with probability p_{i}.
- We will consider lotteries to be outcomes.

Our Goal

- We want to reason about preferences mathematically
- To do this, we must give some rules that allow us to allow us to relate and transform expressions involving the symbols \succeq, \succ and \sim, as well as lotteries.
- Just as we did with probabilities, we will axiomatize preferences.
- These rules will allow us to derive consequences of preference statements
- In the end, one has to either accept these consequences or reject one of the axioms

Preference Axioms

- Completeness: A preference relationship must be defined between every pair of outcomes:

$$
\forall o_{1} \forall o_{2} o_{1} \succeq o_{2} \text { or } o_{2} \succeq o_{1}
$$

Preference Axioms

- Transitivity: Preferences must be transitive:

$$
\text { if } o_{1} \succeq o_{2} \text { and } o_{2} \succeq o_{3} \text { then } o_{1} \succeq o_{3}
$$

- This makes good sense: otherwise $o_{1} \succeq o_{2}$ and $o_{2} \succeq o_{3}$ and $o_{3} \succ o_{1}$.
- An agent should be prepared to pay some amount to swap between an outcome they prefer less and an outcome they prefer more
- Intransitive preferences mean we can construct a "money pump"!

Preference Axioms

Monotonicity: An agent prefers a larger chance of getting a better outcome than a smaller chance:

- If $o_{1} \succ o_{2}$ and $p>q$ then

$$
\left[p: o_{1}, 1-p: o_{2}\right] \succ\left[q: o_{1}, 1-q: o_{2}\right]
$$

Consequence of axioms

- Suppose $o_{1} \succ o_{2}$ and $o_{2} \succ o_{3}$. Consider whether the agent would prefer
- O_{2}
- the lottery $\left[p: o_{1}, 1-p: o_{3}\right]$
for different values of $p \in[0,1]$.
- You can plot which one is preferred as a function of p :

Preference Axioms

Continuity: Suppose $o_{1} \succ o_{2}$ and $o_{2} \succ o_{3}$, then there exists a $p \in[0,1]$ such that

$$
o_{2} \sim\left[p: o_{1}, 1-p: o_{3}\right]
$$

Preference Axioms

Decomposability: ("no fun in gambling"). An agent is indifferent between lotteries that have same probabilities and outcomes. This includes lotteries over lotteries. For example:

$$
\begin{aligned}
& {\left[p: o_{1}, 1-p:\left[q: o_{2}, 1-q: o_{3}\right]\right]} \\
& \quad \sim \quad\left[p: o_{1},(1-p) q: o_{2},(1-p)(1-q): o_{3}\right]
\end{aligned}
$$

Preference Axioms

- Substitutivity: if $o_{1} \sim o_{2}$ then the agent is indifferent between lotteries that only differ by o_{1} and o_{2} :

$$
\left[p: o_{1}, 1-p: o_{3}\right] \sim\left[p: o_{2}, 1-p: o_{3}\right]
$$

Lecture Overview

Decision Theory Intro

Preferences

Utility

What we would like

- We would like a measure of preference that can be combined with probabilities. So that

$$
\begin{aligned}
& \operatorname{value}\left(\left[p: o_{1}, 1-p: o_{2}\right]\right) \\
& \quad=p \times \operatorname{value}\left(o_{1}\right)+(1-p) \times \operatorname{value}\left(o_{2}\right)
\end{aligned}
$$

- Can we use money as this measure of preference?
- Would you you prefer

$$
\$ 1,000,000 \text { or }[0.5: \$ 0,0.5: \$ 2,000,000] ?
$$

What we would like

- We would like a measure of preference that can be combined with probabilities. So that

$$
\begin{aligned}
& \operatorname{value}\left(\left[p: o_{1}, 1-p: o_{2}\right]\right) \\
& \quad=p \times \operatorname{value}\left(o_{1}\right)+(1-p) \times \operatorname{value}\left(o_{2}\right)
\end{aligned}
$$

- Can we use money as this measure of preference?
- Would you you prefer

$$
\$ 1,000,000 \text { or }[0.5: \$ 0,0.5: \$ 2,000,000] ?
$$

- Money is not going to work. Let's invent an abstract concept called "utility".

Utility as a function of money

Theorem

Is it possible that preferences are too complex and muti-faceted to be represented by single numbers?
If preferences satisfy the preceding axioms, then preferences can be measured by a function

$$
\text { utility : outcomes } \rightarrow[0,1]
$$

such that

$$
\text { 1. } o_{1} \succeq o_{2} \text { if and only if utility }\left(o_{1}\right) \geq u \text { utility }(o 2) \text {. }
$$

2. Utilities are linear with probabilities:

$$
\begin{aligned}
& \text { utility }\left(\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right]\right) \\
& \quad=\sum_{i=1}^{k} p_{i} \times \operatorname{utility}\left(o_{i}\right)
\end{aligned}
$$

Proof

Part 1: $o_{1} \succeq o_{2}$ if and only if $\operatorname{utility}\left(o_{1}\right) \geq \operatorname{utility}(o 2)$.

- If all outcomes are equally preferred, set $\operatorname{utility}\left(o_{i}\right)=0$ for all outcomes o_{i}.
- Otherwise, suppose the best outcome is best and the worst outcome is worst.
- For any outcome o_{i}, define utility $\left(o_{i}\right)$ to be the number u_{i} such that

$$
o_{i} \sim\left[u_{i}: \text { best }, 1-u_{i}: \text { worst }\right]
$$

This exists by the Continuity property.

Proof (cont.)

Part 1: $o_{1} \succeq o_{2}$ if and only if $\operatorname{utility}\left(o_{1}\right) \geq u \operatorname{utility}(o 2)$.

- Suppose $o_{1} \succeq o_{2}$ and $\operatorname{utility}\left(o_{i}\right)=u_{i}$, then by Substitutivity,

$$
\begin{aligned}
& {\left[u_{1}: \text { best }, 1-u_{1}: \text { worst }\right]} \\
& \quad \succeq\left[u_{2}: \text { best }, 1-u_{2}: \text { worst }\right]
\end{aligned}
$$

Which, by completeness and monotonicity implies $u_{1} \geq u_{2}$.

Proof (cont.)

Part 2: $\operatorname{utility}\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} \times \operatorname{utility}\left(o_{i}\right)$

- Suppose $p=u$ ilitity $\left(\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right]\right)$.
- Suppose utility $\left(o_{i}\right)=u_{i}$. We know:

$$
o_{i} \sim\left[u_{i}: \text { best }, 1-u_{i}: \text { worst }\right]
$$

- By substitutivity, we can replace each o_{i} by

$$
\begin{aligned}
& {\left[u_{i}: \text { best, } 1-u_{i}: \text { worst }\right] \text {, so }} \\
& \qquad \begin{aligned}
p=\text { utility }([& p_{1}:\left[u_{1}: \text { best }, 1-u_{1}: \text { worst }\right] \\
& \ldots
\end{aligned} \\
& \\
& \left.\left.p_{k}:\left[u_{k}: \text { best }, 1-u_{k}: \text { worst }\right]\right]\right)
\end{aligned}
$$

Proof (cont.)

Part 2: $\operatorname{utility}\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} \times \operatorname{utility}\left(o_{i}\right)$

- By decomposability, this is equivalent to:

$$
\begin{aligned}
& p=u t i l i t y\left(\quad \left[\quad p_{1} u_{1}+\cdots+p_{k} u_{k}\right.\right. \\
& \text { : best, } \\
& p_{1}\left(1-u_{1}\right)+\cdots+p_{k}\left(1-u_{k}\right) \\
& \text { : worst]]) }
\end{aligned}
$$

- Thus, by definition of utility,

$$
p=p_{1} \times u_{1}+\cdots+p_{k} \times u_{k}
$$

