Decision Theory Intro: Preferences and Utility

CPSC 322 Lecture 29

March 22, 2006 Textbook §9.5

Decision Theory Intro: Preferences and Utility

CPSC 322 Lecture 29, Slide 1

Utility

Lecture Overview

Recap

Decision Theory Intro

Preferences

Utility

Decision Theory Intro: Preferences and Utility

æ

イロン イヨン イヨン イヨン

Markov chain

A Markov chain is a special sort of belief network:

• Thus
$$P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t).$$

- "The past is independent of the future given the present."
- A stationary Markov chain is when for all t > 0, t' > 0, $P(S_{t+1}|S_t) = P(S_{t'+1}|S_{t'}).$
 - We specify $P(S_0)$ and $P(S_{t+1}|S_t)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Utility

Hidden Markov Model

A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics
- $P(O_t|S_t)$ specifies the sensor model

Utility

Lecture Overview

Recap

Decision Theory Intro

Preferences

Utility

Decision Theory Intro: Preferences and Utility

æ

イロン イヨン イヨン イヨン

Decisions Under Uncertainty

- In the first part of the course we focused on decision making in domains where the environment was understood with certainty
 - Search/CSPs: single decisions
 - Planning: sequential decisions
- In uncertain domains, we've so far only considered how to represent and update beliefs
- What if an agent has to make decisions in a domain that involves uncertainty?
 - this is likely: one of the main reasons to represent the world probabilistically is to be able to use these beliefs as the basis for making decisions

回 と く ヨ と く ヨ と …

Decisions Under Uncertainty

An agent's decision will depend on:

- 1. what actions are available
- 2. what beliefs the agent has
 - note: this replaces "state" from the deterministic setting
- 3. the agent's goals

- ▶ We've spoken quite a lot about (1) and (2).
 - today let's consider (3)
 - we'll move from all-or-nothing goals to a richer notion: rating how happy the agent is in different situations

高 とう ヨン うまと

Lecture Overview

Recap

Decision Theory Intro

Preferences

Utility

Decision Theory Intro: Preferences and Utility

æ

イロン イヨン イヨン イヨン

- Actions result in outcomes
- Agents have preferences over outcomes
- A rational agent will take the action that leads to the outcome which he most prefers
- Sometimes agents don't know the outcomes of the actions, but they still need to compare actions
- Agents have to act (doing nothing is (often) an action).

Preferences Over Outcomes

If o_1 and o_2 are outcomes

- $o_1 \succeq o_2$ means o_1 is at least as desirable as o_2 .
 - read this as "the agent weakly prefers o₁ to o₂"
- $o_1 \sim o_2$ means $o_1 \succeq o_2$ and $o_2 \succeq o_1$.
 - read this as "the agent is indifferent between o₁ and o₂."
- $o_1 \succ o_2$ means $o_1 \succeq o_2$ and $o_2 \not\succeq o_1$
 - read this as "the agent strictly prefers o₁ to o₂"

Recap	Decision Theory Intro	Preferences	Utility
ottorios			

- An agent may not know the outcomes of his actions, but may instead only have a probability distribution over the outcomes.
- A lottery is a probability distribution over outcomes. It is written

$$[p_1:o_1, p_2:o_2, \dots, p_k:o_k]$$

where the o_i are outcomes and $p_i > 0$ such that

$$\sum_{i} p_i = 1$$

- The lottery specifies that outcome o_i occurs with probability p_i.
- We will consider lotteries to be outcomes.

Our Goal

- We want to reason about preferences mathematically
- ► To do this, we must give some rules that allow us to allow us to relate and transform expressions involving the symbols >, > and ~, as well as lotteries.
- Just as we did with probabilities, we will axiomatize preferences.
 - These rules will allow us to derive consequences of preference statements
 - In the end, one has to either accept these consequences or reject one of the axioms

★ E ► ★ E ►

Preference Axioms

 Completeness: A preference relationship must be defined between every pair of outcomes:

$$\forall o_1 \forall o_2 \ o_1 \succeq o_2 \text{ or } o_2 \succeq o_1$$

Decision Theory Intro: Preferences and Utility

CPSC 322 Lecture 29, Slide 13

→ Ξ → < Ξ →</p>

< 🗇 >

Utility

Preference Axioms

Transitivity: Preferences must be transitive:

if
$$o_1 \succeq o_2$$
 and $o_2 \succeq o_3$ then $o_1 \succeq o_3$

- This makes good sense: otherwise $o_1 \succ o_2$ and $o_2 \succ o_3$ and $o_3 \succ o_1$.
- An agent should be prepared to pay some amount to swap between an outcome they prefer less and an outcome they prefer more
- Intransitive preferences mean we can construct a "money pump"!

< ∃ >

Preference Axioms

Monotonicity: An agent prefers a larger chance of getting a better outcome than a smaller chance:

▶ If
$$o_1 \succ o_2$$
 and $p > q$ then

$$[p:o_1, 1-p:o_2] \succ [q:o_1, 1-q:o_2]$$

Decision Theory Intro: Preferences and Utility

→ Ξ → < Ξ →</p>

Utility

Consequence of axioms

Suppose o₁ ≻ o₂ and o₂ ≻ o₃. Consider whether the agent would prefer

► *o*₂

• the lottery $[p:o_1, 1-p:o_3]$

for different values of $p \in [0, 1]$.

▶ You can plot which one is preferred as a function of *p*:

Utility

Preference Axioms

Continuity: Suppose $o_1 \succ o_2$ and $o_2 \succ o_3$, then there exists a $p \in [0, 1]$ such that

$$o_2 \sim [p:o_1, 1-p:o_3]$$

Decision Theory Intro: Preferences and Utility

イロト イヨト イヨト イヨト

Preference Axioms

Decomposability: ("no fun in gambling"). An agent is indifferent between lotteries that have same probabilities and outcomes. This includes lotteries over lotteries. For example:

$$\begin{aligned} & [p:o_1,1-p:[q:o_2,1-q:o_3]] \\ & \sim \quad [p:o_1,(1-p)q:o_2,(1-p)(1-q):o_3] \end{aligned}$$

Decision Theory Intro: Preferences and Utility

Preference Axioms

Substitutivity: if o₁ ~ o₂ then the agent is indifferent between lotteries that only differ by o₁ and o₂:

$$[p:o_1, 1-p:o_3] \sim [p:o_2, 1-p:o_3]$$

Decision Theory Intro: Preferences and Utility

★ 문 ► ★ 문 ►

Utility

Lecture Overview

Recap

Decision Theory Intro

Preferences

Utility

Decision Theory Intro: Preferences and Utility

æ

イロン イヨン イヨン イヨン

Utility

What we would like

We would like a measure of preference that can be combined with probabilities. So that

$$value([p:o_1, 1-p:o_2])$$

= $p \times value(o_1) + (1-p) \times value(o_2)$

- Can we use money as this measure of preference?
 - Would you you prefer

1,000,000 or [0.5: 0.5: 2,000,000]?

Utility

What we would like

We would like a measure of preference that can be combined with probabilities. So that

$$value([p:o_1, 1-p:o_2])$$

= $p \times value(o_1) + (1-p) \times value(o_2)$

- Can we use money as this measure of preference?
 - Would you you prefer

1,000,000 or [0.5: 0.5: 2,000,000]?

 Money is not going to work. Let's invent an abstract concept called "utility".

- - E + - E +

Utility

Utility as a function of money

æ

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Theorem

Is it possible that preferences are too complex and muti-faceted to be represented by single numbers?

If preferences satisfy the preceding axioms, then preferences can be measured by a function

 $utility: outcomes \rightarrow [0,1]$

such that

- 1. $o_1 \succeq o_2$ if and only if $utility(o_1) \ge utility(o_2)$.
- 2. Utilities are linear with probabilities:

$$utility([p_1:o_1, p_2:o_2, \dots, p_k:o_k]) = \sum_{i=1}^k p_i \times utility(o_i)$$

- A IB N - A IB N - -

Part 1: $o_1 \succeq o_2$ if and only if $utility(o_1) \ge utility(o_2)$.

- ► If all outcomes are equally preferred, set utility(o_i) = 0 for all outcomes o_i.
- Otherwise, suppose the best outcome is *best* and the worst outcome is *worst*.
- ► For any outcome o_i, define utility(o_i) to be the number u_i such that

$$o_i \sim [u_i : best, 1 - u_i : worst]$$

This exists by the Continuity property.

・ 同 ト ・ 三 ト ・ 三 ト

Proof (cont.)

Part 1: $o_1 \succeq o_2$ if and only if $utility(o_1) \ge utility(o_2)$.

► Suppose $o_1 \succeq o_2$ and $utility(o_i) = u_i$, then by Substitutivity, $\begin{bmatrix} u_1 : best, 1 - u_1 : worst \end{bmatrix}$ $\succ \quad \begin{bmatrix} u_2 : best, 1 - u_2 : worst \end{bmatrix}$

.

Which, by completeness and monotonicity implies $u_1 \ge u_2$.

イロト イポト イヨト イヨト 二日

Proof (cont.)

Part 2:
$$utility([p_1:o_1,\ldots,p_k:o_k]) = \sum_{i=1}^k p_i \times utility(o_i)$$

- Suppose $p = utility([p_1: o_1, p_2: o_2, ..., p_k: o_k]).$
- Suppose $utility(o_i) = u_i$. We know:

$$o_i \sim [u_i : best, 1 - u_i : worst]$$

▶ By substitutivity, we can replace each o_i by $[u_i : best, 1 - u_i : worst]$, so

$$p = utility([p_1 : [u_1 : best, 1 - u_1 : worst]$$
$$\dots$$
$$p_k : [u_k : best, 1 - u_k : worst]]$$

Proof (cont.)

Part 2:
$$utility([p_1:o_1,\ldots,p_k:o_k]) = \sum_{i=1}^k p_i \times utility(o_i)$$

By decomposability, this is equivalent to:

$$p = utility([p_1u_1 + \dots + p_ku_k \\ : best, \\ p_1(1 - u_1) + \dots + p_k(1 - u_k) \\ : worst]])$$

Thus, by definition of utility,

$$p = p_1 \times u_1 + \dots + p_k \times u_k$$

< 1[™] >