Reasoning Under Uncertainty: Hidden Markov Models

CPSC 322 Lecture 29

March 22, 2006
Textbook $\S 9.5$

Lecture Overview

Recap

Variable Elimination Example

Hidden Markov Models

Probability of a conjunction

- What we know: the factors $P\left(X_{i} \mid p X_{i}\right)$.
- Using the chain rule and the definition of a belief network, we can write $P\left(X_{1}, \ldots, X_{n}\right)$ as $\prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)$. Thus:

$$
\begin{aligned}
& P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
&=\sum_{Z_{k}} \cdots \sum_{Z_{1}} P\left(X_{1}, \ldots, X_{n}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}}
\end{aligned}
$$

Summing out a variable efficiently

To sum out a variable Z_{j} from a product f_{1}, \ldots, f_{k} of factors:

- Partition the factors into
- those that don't contain Z_{j}, say f_{1}, \ldots, f_{i},
- those that contain Z_{j}, say f_{i+1}, \ldots, f_{k}

We know:

$$
\sum_{Z_{j}} f_{1} \times \cdots \times f_{k}=\left(f_{1} \times \cdots \times f_{i}\right)\left(\sum_{Z_{j}} f_{i+1} \times \cdots \times f_{k}\right) .
$$

- $\left(\sum_{Z_{j}} f_{i+1} \times \cdots \times f_{k}\right)$ is a new factor; let's call it f^{\prime}.
- Now we have:

$$
\sum_{Z_{j}} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f^{\prime}
$$

- Store f^{\prime} explicitly, and discard f_{i+1}, \ldots, f_{k}. Now we've summed out Z_{j}.

Variable elimination algorithm

To compute $P\left(Z \mid Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}\right)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- For each of the other variables $Z_{i} \in\left\{Z_{1}, \ldots, Z_{k}\right\}$, sum out Z_{i}
- Multiply the remaining factors.
- Normalize by dividing the resulting factor $f(Z)$ by $\sum_{Z} f(Z)$.

Lecture Overview

Recap

Variable Elimination Example

Hidden Markov Models

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A, B, C, D, E, F, G, H, I)$
- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(D \mid B, C)$. $P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{A, B, C, D, E, F, I} P(A) \cdot P(B \mid A) \cdot P(C) \cdot P(D \mid B, C)$. $P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate $A: P(G, H)=\sum_{B, C, D, E, F, I} f_{1}(B) \cdot P(C) \cdot P(D \mid B, C)$.

$$
P(E \mid C) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{B, C, D, E, F, I} f_{1}(B) \cdot P(C) \cdot P(D \mid B, C) \cdot P(E \mid C) \cdot P(F \mid D)$. $P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)$
- Eliminate $C: P(G, H)=$

$$
\sum_{B, D, E, F, I} f_{1}(B) \cdot f_{2}(B, D, E) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=$

$$
\sum_{B, D, E, F, I} f_{1}(B) \cdot f_{2}(B, D, E) \cdot P(F \mid D) \cdot P(G \mid F, E) \cdot P(H \mid G) \cdot P(I \mid G)
$$

- Eliminate E :

$$
P(G, H)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot P(H \mid G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P(G, H)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot P(H \mid G) \cdot P(I \mid G)$
- Observe $H=h_{1}$:

$$
P\left(G, H=h_{1}\right)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot P(I \mid G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{B, D, F, I} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot P(I \mid G)$
- Eliminate I :

$$
P\left(G, H=h_{1}\right)=\sum_{B, D, F} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
$\triangleright f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{B, D, F} f_{1}(B) \cdot f_{3}(B, D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate B :

$$
P\left(G, H=h_{1}\right)=\sum_{D, F} f_{6}(D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)
$$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{D, F} f_{6}(D, F, G) \cdot P(F \mid D) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate $D: P\left(G, H=h_{1}\right)=\sum_{F} f_{7}(F, G) \cdot f_{4}(G) \cdot f_{5}(G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=\sum_{F} f_{7}(F, G) \cdot f_{4}(G) \cdot f_{5}(G)$
- Eliminate $F: P\left(G, H=h_{1}\right)=f_{8}(G) \cdot f_{4}(G) \cdot f_{5}(G)$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$
- $f_{8}(G):=\sum_{f \in \operatorname{dom}(F)} f_{7}(F=f, G)$

Variable elimination example

Compute $P\left(G \mid H=h_{1}\right)$. Elimination order: A, C, E, H, I, B, D, F

- $P\left(G, H=h_{1}\right)=f_{8}(G) \cdot f_{4}(G) \cdot f_{5}(G)$
- Normalize: $P\left(G \mid H=h_{1}\right)=\frac{P\left(G, H=h_{1}\right)}{\sum_{g \in \operatorname{dom}(G)} P\left(G, H=h_{1}\right)}$

- $f_{1}(B):=\sum_{a \in \operatorname{dom}(A)} P(A=a) \cdot P(B \mid A=a)$
- $f_{2}(B, D, E):=\sum_{c \in \operatorname{dom}(C)} P(C=c) \cdot P(D \mid B, C=c) \cdot P(E \mid C=c)$
- $f_{3}(B, D, F, G):=\sum_{e \in \operatorname{dom}(E)} f_{2}(B, D, E=e) \cdot P(G \mid F, E=e)$
- $f_{4}(G):=P\left(H=h_{1} \mid G\right)$
- $f_{5}(G):=\sum_{i \in \operatorname{dom}(I)} P(I=i \mid G)$
- $f_{6}(D, F, G):=\sum_{b \in \operatorname{dom}(B)} f_{1}(B=b) \cdot f_{3}(B=b, D, F, G)$
- $f_{7}(F, G):=\sum_{d \in \operatorname{dom}(D)} f_{6}(D=d, F, G) \cdot P(F \mid D=d)$
- $f_{8}(G):=\sum_{f \in \operatorname{dom}(F)} f_{7}(F=f, G)$

Lecture Overview

Recap
 Variable Elimination Example

Hidden Markov Models

Markov chain

- A Markov chain is a special sort of belief network:

- Thus $P\left(S_{t+1} \mid S_{0}, \ldots, S_{t}\right)=P\left(S_{t+1} \mid S_{t}\right)$.
- Often S_{t} represents the state at time t. Intuitively S_{t} conveys all of the information about the history that can affect the future states.
- "The past is independent of the future given the present."

Stationary Markov chain

- A stationary Markov chain is when for all $t>0, t^{\prime}>0$, $P\left(S_{t+1} \mid S_{t}\right)=P\left(S_{t^{\prime}+1} \mid S_{t^{\prime}}\right)$.
- We specify $P\left(S_{0}\right)$ and $P\left(S_{t+1} \mid S_{t}\right)$.
- Simple model, easy to specify
- Often the natural model
- The network can extend indefinitely

Hidden Markov Model

- A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

- $P\left(S_{0}\right)$ specifies initial conditions
- $P\left(S_{t+1} \mid S_{t}\right)$ specifies the dynamics
- $P\left(O_{t} \mid S_{t}\right)$ specifies the sensor model

Example: localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM:

Example localization domain

- Circular corridor, with 16 locations:

- Doors at positions: 2, 4, 7, 11.
- Noisy Sensors
- Stochastic Dynamics
- Robot starts at an unknown location and must determine where it is.

Example Sensor Model

- $P($ Observe Door \mid At Door $)=0.8$
- $P($ Observe Door \mid Not At Door $)=0.1$

Example Dynamics Model

- $P\left(\right.$ loc $_{t+1}=L \mid$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.1$
- $P\left(\right.$ loc $_{t+1}=L+1 \mid$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.8$
- $P\left(\right.$ loc $_{t+1}=L+2 \mid$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.074$
- $P\left(l o c_{t+1}=L^{\prime} \mid\right.$ action $_{t}=$ goRight $\left.\wedge l o c_{t}=L\right)=0.002$ for any other location L^{\prime}.
- All location arithmetic is modulo 16.
- The action goLeft works the same but to the left.

Combining sensor information

- Example: we can combine information from a light sensor and the door sensor Sensor Fusion

S_{t} robot location at time t
D_{t} door sensor value at time t L_{t} light sensor value at time t

Localization demo

- http://www.cs.ubc.ca/spider/poole/demos/ localization/localization.html

