# Reasoning Under Uncertainty: Variable Elimination

CPSC 322 Lecture 28

March 20, 2006 Textbook §9.4

#### Chain



- ► alarm and report are independent: false.
- alarm and report are independent given leaving: true.
- ► Intuitively, the only way that the *alarm* affects report is by affecting leaving.

#### Common ancestors



- ► *alarm* and *smoke* are independent: false.
- alarm and smoke are independent given fire: true.
- Intuitively, fire can explain alarm and smoke; learning one can affect the other by changing your belief in fire.

#### Common descendants



- ► tampering and fire are independent: true.
- ▶ tampering and fire are independent given alarm: false.
- ► Intuitively, tampering can explain away fire

#### Belief Network Inference

- Our goal: compute probabilities of variables in a belief network
- ► Two cases:
  - 1. the unconditional (prior) distribution over one or more variables
  - 2. the posterior distribution over one or more variables, conditioned on one or more observed variables
- ➤ To address both cases, we only need a computational solution to case 1
- Our method: exploiting the structure of the network to efficiently eliminate (sum out) the non-observed, non-query variables one at a time.

#### Evidence

▶ If we want to compute the posterior probability of Z given evidence  $Y_1 = v_1 \land \ldots \land Y_j = v_j$ :

$$P(Z|Y_1 = v_1, \dots, Y_j = v_j)$$

$$= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{P(Y_1 = v_1, \dots, Y_j = v_j)}$$

$$= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{\sum_{Z} P(Z, Y_1 = v_1, \dots, Y_j = v_j)}.$$

▶ So the computation reduces to the probability of  $P(Z, Y_1 = v_1, \dots, Y_i = v_i)$ .

#### **Factors**

- ► A factor is a representation of a function from a tuple of random variables into a number.
- ▶ We will write factor f on variables  $X_1, ..., X_j$  as  $f(X_1, ..., X_j)$ .
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
  - e.g.,  $P(X_1, X_2)$  is a factor  $f(X_1, X_2)$
  - e.g.,  $P(X_1, X_2, X_3 = v_3)$  is a factor  $f(X_1, X_2)$
  - e.g.,  $P(X_1, X_3 = v_3 | X_2)$  is a factor  $f(X_1, X_2)$

# Manipulating Factors

- We can make new factors out of an existing factor
- Our first operation: we can assign some or all of the variables of a factor.
  - $f(X_1 = v_1, X_2, \dots, X_j)$ , where  $v_1 \in dom(X_1)$ , is a factor on  $X_2, \dots, X_j$ .
  - $f(X_1 = v_1, X_2 = v_2, \dots, X_j = v_j)$  is a number that is the value of f when each  $X_i$  has value  $v_i$ .
- ▶ The former is also written as  $f(X_1, X_2, ..., X_j)_{X_1 = v_1, ..., X_j = v_j}$

## Example factors

$$r(X=t, Y, Z=f)$$
: t 0.9  
f 0.8  
 $r(X=t, Y=f, Z=f) = 0.8$ 

# Summing out variables

Our second operation: we can sum out a variable, say  $X_1$  with domain  $\{v_1, \ldots, v_k\}$ , from factor  $f(X_1, \ldots, X_j)$ , resulting in a factor on  $X_2, \ldots, X_j$  defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j)$$
=  $f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$ 

## Summing out a variable example

|         | A | В | C | vai  |
|---------|---|---|---|------|
|         | t | t | t | 0.03 |
|         | t | t | f | 0.07 |
|         | t | f | t | 0.54 |
| $f_3$ : | t | f | f | 0.36 |
|         | f | t | t | 0.06 |
|         | f | t | f | 0.14 |
|         | f | f | t | 0.48 |
|         | f | f | f | 0.32 |
|         |   |   |   |      |

|                | A | C | val  |
|----------------|---|---|------|
|                | t | t | 0.57 |
| $\sum_B f_3$ : | t | f | 0.43 |
|                | f | t | 0.54 |
|                | f | f | 0.46 |

# Multiplying factors

- Our third operation: factors can be multiplied together.
- ▶ The product of factor  $f_1(\overline{X}, \overline{Y})$  and  $f_2(\overline{Y}, \overline{Z})$ , where  $\overline{Y}$  are the variables in common, is the factor  $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$  defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y}) f_2(\overline{Y}, \overline{Z}).$$

# Multiplying factors example

|         | A | B | val |
|---------|---|---|-----|
|         | t | t | 0.1 |
| $f_1$ : | t | f | 0.9 |
|         | f | t | 0.2 |
|         | f | f | 0.8 |

|         | $\mid B \mid$ | C | vai |
|---------|---------------|---|-----|
|         | t             | t | 0.3 |
| $f_2$ : | t             | f | 0.7 |
|         | f             | t | 0.6 |
|         | f             | f | 0.4 |

|                    | A | B | C | val  |
|--------------------|---|---|---|------|
|                    | t | t | t | 0.03 |
|                    | t | t | f | 0.07 |
|                    | t | f | t | 0.54 |
| $f_1 \times f_2$ : | t | f | f | 0.36 |
|                    | f | t | t | 0.06 |
|                    | f | t | f | 0.14 |
|                    | f | f | t | 0.48 |
|                    | f | f | f | 0.32 |

## Probability of a conjunction

- ▶ Suppose the variables of the belief network are  $X_1, \ldots, X_n$ .
- ▶ What we want to compute: the factor  $P(Z, Y_1 = v_1, \dots, Y_j = v_j)$
- ▶ We can compute  $P(Z, Y_1 = v_1, ..., Y_j = v_j)$  by summing out the variables  $Z_1, ..., Z_k = \{X_1, ..., X_n\} \setminus \{Z, Y_1, ..., Y_j\}$ .
- We sum out these variables one at a time
  - the order in which we do this is called our elimination ordering.

$$P(Z, Y_1 = v_1, \dots, Y_j = v_j)$$

$$= \sum_{Z_k} \dots \sum_{Z_1} P(X_1, \dots, X_n)_{Y_1 = v_1, \dots, Y_j = v_j}.$$

# Probability of a conjunction

- ▶ What we know: the factors  $P(X_i|pX_i)$ .
- ▶ Using the chain rule and the definition of a belief network, we can write  $P(X_1,...,X_n)$  as  $\prod_{i=1}^n P(X_i|pX_i)$ . Thus:

$$P(Z, Y_1 = v_1, \dots, Y_j = v_j)$$

$$= \sum_{Z_k} \dots \sum_{Z_1} P(X_1, \dots, X_n)_{Y_1 = v_1, \dots, Y_j = v_j}.$$

$$= \sum_{Z_k} \dots \sum_{Z_1} \prod_{i=1}^n P(X_i | pX_i)_{Y_1 = v_1, \dots, Y_j = v_j}.$$

### Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- ▶ It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently?
  - ▶ factor out the a and then the h giving a(b+c+d+h(e+f+q))
  - this takes only 7 multiplications or additions
- ▶ How can we compute  $\sum_{Z_1} \prod_{i=1}^n P(X_i|pX_i)$  efficiently?
- ▶ Factor out those terms that don't involve  $Z_1$ :

$$\left(\prod_{i|Z_1 \notin \{X_i\} \cup pX_i} P(X_i|pX_i)\right) \left(\sum_{Z_1} \prod_{i|Z_1 \in \{X_i\} \cup pX_i} P(X_i|pX_i)\right)$$

(terms that do not involve  $Z_i$ )

(terms that involve  $Z_i$ )

# Summing out a variable efficiently

To sum out a variable  $Z_j$  from a product  $f_1, \ldots, f_k$  of factors:

- Partition the factors into
  - those that don't contain  $Z_j$ , say  $f_1, \ldots, f_i$ ,
  - those that contain  $Z_j$ , say  $f_{i+1}, \ldots, f_k$

We know:

$$\sum_{Z_j} f_1 \times \cdots \times f_k = (f_1 \times \cdots \times f_i) \left( \sum_{Z_j} f_{i+1} \times \cdots \times f_k \right).$$

- igl|  $\left(\sum_{Z_j} f_{i+1} \times \cdots \times f_k\right)$  is a new factor; let's call it f'.
- Now we have:

$$\sum_{Z_i} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f'.$$

▶ Store f' explicitly, and discard  $f_{i+1}, \ldots, f_k$ . Now we've summed out  $Z_i$ .

## Variable elimination algorithm

To compute  $P(Z|Y_1 = v_1 \land \ldots \land Y_j = v_j)$ :

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- ▶ For each of the other variables  $Z_i \in \{Z_1, \dots, Z_k\}$ , sum out  $Z_i$
- Multiply the remaining factors.
- ▶ Normalize by dividing the resulting factor f(Z) by  $\sum_{Z} f(Z)$ .