Reasoning Under Uncertainty: Variable Elimination

CPSC 322 Lecture 28

March 20, 2006
Textbook $\S 9.4$

Chain

- alarm and report are independent: false.
- alarm and report are independent given leaving: true.
- Intuitively, the only way that the alarm affects report is by affecting leaving.

Common ancestors

- alarm and smoke are independent: false.
- alarm and smoke are independent given fire: true.
- Intuitively, fire can
explain alarm and smoke; learning one can affect the other by changing your belief in fire.

Common descendants

- tampering and fire are independent: true.
- tampering and fire are independent given alarm: false.
- Intuitively, tampering can explain away fire

Belief Network Inference

- Our goal: compute probabilities of variables in a belief network
- Two cases:

1. the unconditional (prior) distribution over one or more variables
2. the posterior distribution over one or more variables, conditioned on one or more observed variables

- To address both cases, we only need a computational solution to case 1
- Our method: exploiting the structure of the network to efficiently eliminate (sum out) the non-observed, non-query variables one at a time.

Evidence

- If we want to compute the posterior probability of Z given evidence $Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}$:

$$
\begin{aligned}
& P\left(Z \mid Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& \quad=\frac{P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{P\left(Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)} \\
& \quad=\frac{P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{\sum_{Z} P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) .}
\end{aligned}
$$

- So the computation reduces to the probability of $P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$.

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_{1}, \ldots, X_{j} as $f\left(X_{1}, \ldots, X_{j}\right)$.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
- e.g., $P\left(X_{1}, X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$
- e.g., $P\left(X_{1}, X_{2}, X_{3}=v_{3}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$
- e.g., $P\left(X_{1}, X_{3}=v_{3} \mid X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$

Manipulating Factors

- We can make new factors out of an existing factor
- Our first operation: we can assign some or all of the variables of a factor.
- $f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)$, where $v_{1} \in \operatorname{dom}\left(X_{1}\right)$, is a factor on X_{2}, \ldots, X_{j}.
- $f\left(X_{1}=v_{1}, X_{2}=v_{2}, \ldots, X_{j}=v_{j}\right)$ is a number that is the value of f when each X_{i} has value v_{i}.
- The former is also written as $f\left(X_{1}, X_{2}, \ldots, X_{j}\right)_{X_{1}=v_{1}, \ldots, X_{j}=v_{j}}$

Example factors

$$
\begin{aligned}
& \begin{array}{|lll|l|}
\hline X & Y & Z & \mathrm{val} \\
\hline \mathrm{t} & \mathrm{t} & \mathrm{t} & 0.1 \\
\mathrm{t} & \mathrm{t} & \mathrm{f} & 0.9 \\
\mathrm{t} & \mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{t} & \mathrm{f} & \mathrm{f} & 0.8 \\
\hline
\end{array} \quad r(X=t, Y, Z): \begin{array}{|cc|c|}
\hline \mathrm{t} & \mathrm{t} & 0.1 \\
\mathrm{t} & \mathrm{f} & 0.9 \\
\mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{f} & \mathrm{f} & 0.8 \\
\hline
\end{array} \\
& \begin{array}{rl|l|}
\\
r(X=t, Y, Z=f): &
\end{array}
\end{aligned}
$$

Summing out variables

Our second operation: we can sum out a variable, say X_{1} with domain $\left\{v_{1}, \ldots, v_{k}\right\}$, from factor $f\left(X_{1}, \ldots, X_{j}\right)$, resulting in a factor on X_{2}, \ldots, X_{j} defined by:

$$
\begin{aligned}
& \left(\sum_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right) \\
& \quad=f\left(X_{1}=v_{1}, \ldots, X_{j}\right)+\cdots+f\left(X_{1}=v_{k}, \ldots, X_{j}\right)
\end{aligned}
$$

Summing out a variable example

$f_{3}:$| A | B | C | val |
| :--- | :--- | :--- | ---: |
| t | t | t | 0.03 |
| t | t | f | 0.07 |
| t | f | t | 0.54 |
| t | f | f | 0.36 |
| f | t | t | 0.06 |
| f | t | f | 0.14 |
| f | f | t | 0.48 |
| f | f | f | 0.32 |

$\sum_{B} f_{3}:$| A | C | val |
| :---: | :---: | :---: |
| t | t | 0.57 |
| t | f | 0.43 |
| f | t | 0.54 |
| f | f | 0.46 |

Multiplying factors

- Our third operation: factors can be multiplied together.
- The product of factor $f_{1}(\bar{X}, \bar{Y})$ and $f_{2}(\bar{Y}, \bar{Z})$, where \bar{Y} are the variables in common, is the factor $\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})$ defined by:

$$
\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})=f_{1}(\bar{X}, \bar{Y}) f_{2}(\bar{Y}, \bar{Z})
$$

Multiplying factors example

$f_{1}:$| A | B | val |
| :--- | :--- | :--- |
| t | t | 0.1 |
| t | f | 0.9 |
| f | t | 0.2 |
| f | f | 0.8 |

$f_{2}:$| B | C | val |
| :--- | :--- | :---: |
| t | t | 0.3 |
| t | f | 0.7 |
| f | t | 0.6 |
| f | f | 0.4 |

$f_{1} \times f_{2}:$| A | B | C | val |
| :---: | :---: | :---: | ---: |
| t | t | t | 0.03 |
| t | t | f | 0.07 |
| t | f | t | 0.54 |
| t | f | f | 0.36 |
| f | t | t | 0.06 |
| f | t | f | 0.14 |
| f | f | t | 0.48 |
| f | f | f | 0.32 |

Probability of a conjunction

- Suppose the variables of the belief network are X_{1}, \ldots, X_{n}.
- What we want to compute: the factor $P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$
- We can compute $P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$ by summing out the variables $Z_{1}, \ldots, Z_{k}=\left\{X_{1}, \ldots, X_{n}\right\} \backslash\left\{Z, Y_{1}, \ldots, Y_{j}\right\}$.
- We sum out these variables one at a time
- the order in which we do this is called our elimination ordering.

$$
\begin{aligned}
& P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} P\left(X_{1}, \ldots, X_{n}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} .
\end{aligned}
$$

Probability of a conjunction

- What we know: the factors $P\left(X_{i} \mid p X_{i}\right)$.
- Using the chain rule and the definition of a belief network, we can write $P\left(X_{1}, \ldots, X_{n}\right)$ as $\prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)$. Thus:

$$
\begin{aligned}
& P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} P\left(X_{1}, \ldots, X_{n}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}}
\end{aligned}
$$

Computing sums of products

Computation in belief networks thus reduces to computing the sums of products.

- It takes 14 multiplications or additions to evaluate the expression $a b+a c+a d+a e h+a f h+a g h$. How can this expression be evaluated more efficiently?
- factor out the a and then the h giving

$$
a(b+c+d+h(e+f+g))
$$

- this takes only 7 multiplications or additions
- How can we compute $\sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid p X_{i}\right)$ efficiently?
- Factor out those terms that don't involve Z_{1} :
$\left(\prod_{i \mid Z_{1} \notin\left\{X_{i}\right\} \cup p X_{i}} P\left(X_{i} \mid p X_{i}\right)\right)\left(\sum_{Z_{1}} \prod_{i \mid Z_{1} \in\left\{X_{i}\right\} \cup p X_{i}} P\left(X_{i} \mid p X_{i}\right)\right)$
(terms that do not involve Z_{i})
(terms that involve Z_{i})

Summing out a variable efficiently

To sum out a variable Z_{j} from a product f_{1}, \ldots, f_{k} of factors:

- Partition the factors into
- those that don't contain Z_{j}, say f_{1}, \ldots, f_{i},
- those that contain Z_{j}, say f_{i+1}, \ldots, f_{k}

We know:

$$
\sum_{Z_{j}} f_{1} \times \cdots \times f_{k}=\left(f_{1} \times \cdots \times f_{i}\right)\left(\sum_{Z_{j}} f_{i+1} \times \cdots \times f_{k}\right) .
$$

- $\left(\sum_{Z_{j}} f_{i+1} \times \cdots \times f_{k}\right)$ is a new factor; let's call it f^{\prime}.
- Now we have:

$$
\sum_{Z_{j}} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f^{\prime}
$$

- Store f^{\prime} explicitly, and discard f_{i+1}, \ldots, f_{k}. Now we've summed out Z_{j}.

Variable elimination algorithm

To compute $P\left(Z \mid Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}\right)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- For each of the other variables $Z_{i} \in\left\{Z_{1}, \ldots, Z_{k}\right\}$, sum out Z_{i}
- Multiply the remaining factors.
- Normalize by dividing the resulting factor $f(Z)$ by $\sum_{Z} f(Z)$.

