Reasoning Under Uncertainty: Belief Networks

CPSC 322 Lecture 26

March 15, 2006 Textbook §9.3

Lecture Overview

Recap

Belief Networks

Belief Network Examples

Conditional independence

- Sometimes, two random variables might not be entirely independent. However, they can become independent after we observe some third variable.
- ▶ Random variable X is independent of random variable Y given random variable Z if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$, $y_k \in dom(Y)$ and $z_m \in dom(Z)$,

$$P(X = x_i | Y = y_j \land Z = z_m)$$

$$= P(X = x_i | Y = y_k \land Z = z_m)$$

$$= P(X = x_i | Z = z_m).$$

▶ That is, knowledge of Y's value doesn't affect your belief in the value of X, given a value of Z.

Examples of conditional independence

- ▶ The probability that the Canucks will win the Stanley Cup is independent of whether light *l*1 is lit given whether there is outside power.
 - if two random variables are independent, they're often also conditionally independent given a third variable.
 - ▶ however, there are special cases where this is not the case¹

 $^{^1}$ If you're interested: let C_1 be the proposition that coin 1 is heads; let C_2 be the proposition that coin 2 is heads; let B be the proposition that coin 1 and coin 2 are both either heads or tails. $P(C_1|C_2) = P(C_1)$: C_1 and C_2 are probabilistically independent. But $P(C_1|C_2,B) \neq P(C_1|B)$: if I know both C_2 and B, I know C_1 exactly, but if I only know B I know nothing. Hence C_1 and C_2 are not conditionally independent given B.

More examples of conditional independence

- ▶ Whether light l1 is lit is independent of the position of light switch s2 given whether there is power in wire w_0 .
 - two random variables that might not be independent can still be conditionally independent
- ▶ Whether there is someone in a room is independent of whether a light *l*2 is lit given the position of switch *s*3.
- ▶ Every other variable may be independent of whether light l1 is lit given whether there is power in wire w_0 and the status of light l1 (if it's ok, or if not, how it's broken).

Lecture Overview

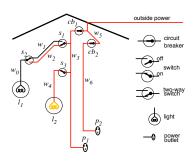
Recap

Belief Networks

Belief Network Example

Idea of belief networks

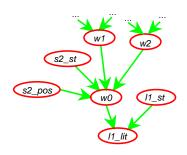
Whether l1 is lit $(L1_lit)$ depends only on the status of the light $(L1_st)$ and whether there is power in wire w0. Thus, $L1_lit$ is independent of the other variables given $L1_st$ and W0. In a belief network, W0 and $L1_st$ are parents of $L1_lit$.



Similarly, W0 depends only on whether there is power in w1, whether there is power in w2, the position of switch s2 ($S2_pos$), and the status of switch s2 ($S2_st$).

Idea of belief networks

Whether l1 is lit $(L1_lit)$ depends only on the status of the light $(L1_st)$ and whether there is power in wire w0. Thus, $L1_lit$ is independent of the other variables given $L1_st$ and W0. In a belief network, W0 and $L1_st$ are parents of $L1_lit$.



Similarly, W0 depends only on whether there is power in w1, whether there is power in w2, the position of switch s2 ($S2_pos$), and the status of switch s2 ($S2_st$).

Components of a belief network

A belief network consists of:

- a directed acyclic graph with nodes labeled with random variables
- a domain for each random variable
- a set of conditional probability tables for each variable given its parents (which includes prior probabilities for nodes with no parents).

Constructing a belief network

Given a set of random variables, a belief network can be constructed as follows:

- ▶ Totally order the variables of interest: $X_1, ..., X_n$
- ► Theorem of probability theory (chain rule): $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i|X_1,...,X_{i-1})$
- ▶ The parents pX_i of X_i are those predecessors of X_i that render X_i independent of the other predecessors. That is, $pX_i \subseteq X_1, \dots, X_{i-1}$ and $P(X_i|pX_i) = P(X_i|X_1, \dots, X_{i-1})$
- ▶ So $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i|pX_i)$

Lecture Overview

Recar

Belief Networks

Belief Network Examples

Suppose you want to diagnose whether there is a fire in a building

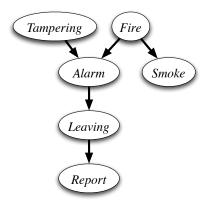
- you receive a noisy report about whether everyone is leaving the building.
- if everyone is leaving, this may have been caused by a fire alarm.
- if there is a fire alarm, it may have been caused by a fire or by tampering
- if there is a fire, there may be smoke

First you choose the variables. In this case, all are boolean:

- ► Tampering is true when the alarm has been tampered with
- ▶ Fire is true when there is a fire
- Alarm is true when there is an alarm
- Smoke is true when there is smoke
- ▶ Leaving is true if there are lots of people leaving the building
- Report is true if the sensor reports that people are leaving the building

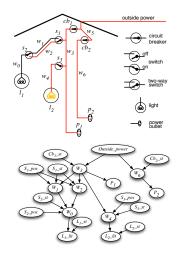
- ▶ Next, you order the variables: Fire; Tampering; Alarm; Smoke; Leaving; Report.
- Now evaluate which variables are conditionally independent given their parents:
 - Fire is independent of Tampering (given no other information)
 - ▶ Alarm depends on both Fire and Tampering. That is, we are making no independence assumptions about Fire, given this variable ordering.
 - ► Smoke depends only on Fire, and is independent of Tampering and Alarm given whether there is a Fire
 - ► Leaving only depends on Alarm and not directly on Fire or Tampering or Smoke. That is, Leaving is independent of the other variables given Alarm.
 - Report only directly depends on Leaving.

This corresponds to the following belief network:



Of course, we're not done until we also come up with conditional probability tables for each node in the graph.

Example: Circuit Diagnosis



The belief network also specifies:

- ▶ The domain of the variables: $W_0, \ldots, W_6 \in \{live, dead\}$ $S_{1_pos}, S_{2_pos}, \text{ and } S_{3_pos} \text{ have domain } \{up, down\}$ S_{1_st} has $\{ok, upside_down, short, intermittent, broken\}.$
- Conditional probabilities, including: $P(W_1 = live | s_1_pos = up \land S_1_st = ok \land W_3 = live)$ $P(W_1 = live | s_1_pos = up \land S_1_st = ok \land W_3 = dead)$ $P(S_1_pos = up)$ $P(S_1_st = upside_down)$

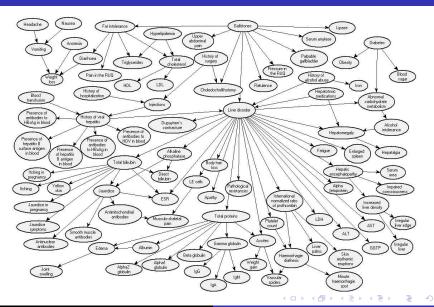
Example: Circuit Diagnosis

The power network can be used in a number of ways:

- Conditioning on the status of the switches and circuit breakers, whether there is outside power and the position of the switches, you can simulate the lighting.
- ▶ Given values for the switches, the outside power, and whether the lights are lit, you can determine the posterior probability that each switch or circuit breaker is *ok* or not.
- Given some switch positions and some outputs and some intermediate values, you can determine the probability of any other variable in the network.

Example: Liver Diagnosis

Source: Onisko et al., 1999



Belief network summary

- ► A belief network is a directed acyclic graph (DAG) where nodes are random variables.
 - ▶ A belief network is automatically acyclic by construction.
- ► The parents of a node n are those variables on which n directly depends.
- ➤ A belief network is a graphical representation of dependence and independence:
 - ► A variable is conditionally independent of its non-descendants given its parents.