Reasoning Under Uncertainty: Conditional Probability and Probabilistic Independence

CPSC 322 Lecture 24

March 10, 2006
Textbook $\S 9.1$ - §9.3

Lecture Overview

Recap

Conditional Probability

Bayes' Theorem

Strict (or Marginal) Independence

Probability

- Probability is formal measure of uncertainty. There are two camps:
- Frequentists: believe that probability represents something objective, and compute probabilities by counting the frequencies of different events
- Bayesians: believe that probability represents something subjective, and understand probabilities as degrees of belief.
- They compute probabilities by starting with prior beliefs, and then updating beliefs when they get new data.
- Example: Your degree of belief that a bird can fly is your measure of belief in the flying ability of an individual based only on the knowledge that the individual is a bird.
- Other agents may have different probabilities, as they may have had different experiences with birds or different knowledge about this particular bird.
- An agent's belief in a bird's flying ability is affected by what the agent knows about that bird.

Possible World Semantics

- A random variable is a term in a language that can take one of a number of different values.
- The domain of a variable X, written $\operatorname{dom}(X)$, is the set of values X can take.
- A possible world specifies an assignment of one value to each random variable.
- $w \models X=x$ means variable X is assigned value x in world w.
- Let Ω be the set of all possible worlds.
- Define a nonnegative measure $\mu(w)$ to each world w so that the measures of the possible worlds sum to 1 .
- The probability of proposition f is defined by:

$$
P(f)=\sum_{w \models f} \mu(w) .
$$

Axioms of Probability: finite case

- Four axioms define what follows from a set of probabilities:
- Axiom $1 P(f)=P(g)$ if $f \leftrightarrow g$ is a tautology. That is, logically equivalent formulae have the same probability.
- Axiom $20 \leq P(f)$ for any formula f.
- Axiom $3 P(\tau)=1$ if τ is a tautology.
- Axiom $4 P(f \vee g)=P(f)+P(g)$ if $\neg(f \wedge g)$ is a tautology.
- You can think of these axioms as constraints on which functions P we can treat as probabilities.
- These axioms are sound and complete with respect to the semantics.
- if you obey these axioms, there will exist some μ which is consistent with your P
- there exists some P which obeys these axioms for any given μ

Lecture Overview

Recap

Conditional Probability

Bayes' Theorem

Strict (or Marginal) Independence

Probability Distributions

- A probability distribution on a random variable X is a function $\operatorname{dom}(X) \rightarrow[0,1]$ such that

$$
x \mapsto P(X=x) .
$$

This is written as $P(X)$.

- This also includes the case where we have tuples of variables. E.g., $P(X, Y, Z)$ means $P(\langle X, Y, Z\rangle)$.
- When $\operatorname{dom}(X)$ is infinite sometimes we need a probability density function...

Conditioning

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model taking all background information into account. This gives the prior probability.
- All other information must be conditioned on.
- If evidence e is all of the information obtained subsequently, the conditional probability $P(h \mid e)$ of h given e is the posterior probability of h.

Semantics of Conditional Probability

- Evidence e rules out possible worlds incompatible with e.
- We can represent this using a new measure, μ_{e}, over possible worlds

$$
\mu_{e}(\omega)= \begin{cases}\frac{1}{P(e)} \times \mu(\omega) & \text { if } \omega \neq e \\ 0 & \text { if } \omega \not \equiv e\end{cases}
$$

- The conditional probability of formula h given evidence e is

$$
\begin{aligned}
P(h \mid e) & =\sum_{\omega \models h} \mu_{e}(w) \\
& =\frac{P(h \wedge e)}{P(e)}
\end{aligned}
$$

Chain Rule

$$
\begin{aligned}
& P\left(f_{1} \wedge f_{2} \wedge \ldots \wedge f_{n}\right) \\
&= P\left(f_{n} \mid f_{1} \wedge \cdots \wedge f_{n-1}\right) \times \\
& P\left(f_{1} \wedge \cdots \wedge f_{n-1}\right) \\
&= P\left(f_{n} \mid f_{1} \wedge \cdots \wedge f_{n-1}\right) \times \\
& P\left(f_{n-1} \mid f_{1} \wedge \cdots \wedge f_{n-2}\right) \times \\
& P\left(f_{1} \wedge \cdots \wedge f_{n-2}\right) \\
&= P\left(f_{n} \mid f_{1} \wedge \cdots \wedge f_{n-1}\right) \times \\
& P\left(f_{n-1} \mid f_{1} \wedge \cdots \wedge f_{n-2}\right) \\
& \times \cdots \times P\left(f_{3} \mid f_{1} \wedge f_{2}\right) \times P\left(f_{2} \mid f_{1}\right) \times P\left(f_{1}\right) \\
&= \prod_{i=1}^{n} P\left(f_{i} \mid f_{1} \wedge \cdots \wedge f_{i-1}\right)
\end{aligned}
$$

Lecture Overview

Recap

Conditional Probability

Bayes' Theorem

Strict (or Marginal) Independence

Bayes' theorem

The chain rule and commutativity of conjunction ($h \wedge e$ is equivalent to $e \wedge h$) gives us:

$$
\begin{aligned}
P(h \wedge e) & =P(h \mid e) \times P(e) \\
& =P(e \mid h) \times P(h) .
\end{aligned}
$$

If $P(e) \neq 0$, you can divide the right hand sides by $P(e)$:

$$
P(h \mid e)=\frac{P(e \mid h) \times P(h)}{P(e)} .
$$

This is Bayes' theorem.

Why is Bayes' theorem interesting?

- Often you have causal knowledge:
P (symptom | disease)
P (light is off \mid status of switches and switch positions)
P (alarm | fire)
P (image looks like | a tree is in front of a car)
- and want to do evidential reasoning:
P (disease | symptom)
P (status of switches | light is off and switch positions)
$P($ fire \mid alarm $)$.
$P($ a tree is in front of a car | image looks like $\boldsymbol{*})$

Lecture Overview

Recap

Conditional Probability

Bayes' Theorem

Strict (or Marginal) Independence

Probabilistic independence

Random variable X is independent of random variable Y if, for all $x_{i} \in \operatorname{dom}(X), y_{j} \in \operatorname{dom}(Y)$ and $y_{k} \in \operatorname{dom}(Y)$,

$$
\begin{aligned}
& P\left(X=x_{i} \mid Y=y_{j}\right) \\
& \quad=P\left(X=x_{i} \mid Y=y_{k}\right) \\
& \quad=P\left(X=x_{i}\right)
\end{aligned}
$$

That is, knowledge of Y^{\prime} 's value doesn't affect your belief in the value of X.
This is also called marginal independence.

Examples of probabilistic independence

- The probability that the Canucks will win the Stanley Cup is independent of whether light $l 1$ is lit.
- remember the diagnostic assistant domain: the picture will recur in a minute!
- Whether there is someone in a room is independent of whether a light $l 2$ is lit.
- Whether light $l 1$ is lit is not independent of the position of switch $s 2$.

