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Probability

I Probability is formal measure of uncertainty. There are two
camps:

I Frequentists: believe that probability represents something
objective, and compute probabilities by counting the
frequencies of different events

I Bayesians: believe that probability represents something
subjective, and understand probabilities as degrees of belief.

I They compute probabilities by starting with prior beliefs, and
then updating beliefs when they get new data.

I Example: Your degree of belief that a bird can fly is your
measure of belief in the flying ability of an individual based
only on the knowledge that the individual is a bird.

I Other agents may have different probabilities, as they may
have had different experiences with birds or different
knowledge about this particular bird.

I An agent’s belief in a bird’s flying ability is affected by what
the agent knows about that bird.
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Possible World Semantics

I A random variable is a term in a language that can take one
of a number of different values.

I The domain of a variable X, written dom(X), is the set of
values X can take.

I A possible world specifies an assignment of one value to each
random variable.

I w |= X = x means variable X is assigned value x in world w.

I Let Ω be the set of all possible worlds.

I Define a nonnegative measure µ(w) to each world w so that
the measures of the possible worlds sum to 1.

I The probability of proposition f is defined by:

P (f) =
∑
w|=f

µ(w).
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Axioms of Probability: finite case

I Four axioms define what follows from a set of probabilities:
I Axiom 1 P (f) = P (g) if f ↔ g is a tautology. That is,

logically equivalent formulae have the same probability.
I Axiom 2 0 ≤ P (f) for any formula f .
I Axiom 3 P (τ) = 1 if τ is a tautology.
I Axiom 4 P (f ∨ g) = P (f) + P (g) if ¬(f ∧ g) is a tautology.

I You can think of these axioms as constraints on which
functions P we can treat as probabilities.

I These axioms are sound and complete with respect to the
semantics.

I if you obey these axioms, there will exist some µ which is
consistent with your P

I there exists some P which obeys these axioms for any given µ
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Probability Distributions

I A probability distribution on a random variable X is a
function dom(X) → [0, 1] such that

x 7→ P (X = x).

This is written as P (X).
I This also includes the case where we have tuples of variables.

E.g., P (X, Y, Z) means P (〈X, Y, Z〉).
I When dom(X) is infinite sometimes we need a probability

density function...
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Conditioning

I Probabilistic conditioning specifies how to revise beliefs based
on new information.

I You build a probabilistic model taking all background
information into account. This gives the prior probability.

I All other information must be conditioned on.

I If evidence e is all of the information obtained subsequently,
the conditional probability P (h|e) of h given e is the posterior
probability of h.
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Semantics of Conditional Probability

I Evidence e rules out possible worlds incompatible with e.

I We can represent this using a new measure, µe, over possible
worlds

µe(ω) =
{ 1

P (e) × µ(ω) if ω |= e

0 if ω 6|= e

I The conditional probability of formula h given evidence e is

P (h|e) =
∑
ω|=h

µe(w)

=
P (h ∧ e)

P (e)
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Chain Rule

P (f1 ∧ f2 ∧ . . . ∧ fn)
= P (fn|f1 ∧ · · · ∧ fn−1)×

P (f1 ∧ · · · ∧ fn−1)
= P (fn|f1 ∧ · · · ∧ fn−1)×

P (fn−1|f1 ∧ · · · ∧ fn−2)×
P (f1 ∧ · · · ∧ fn−2)

= P (fn|f1 ∧ · · · ∧ fn−1)×
P (fn−1|f1 ∧ · · · ∧ fn−2)
× · · · × P (f3|f1 ∧ f2)× P (f2|f1)× P (f1)

=
n∏

i=1

P (fi|f1 ∧ · · · ∧ fi−1)
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Bayes’ theorem

The chain rule and commutativity of conjunction (h ∧ e is
equivalent to e ∧ h) gives us:

P (h ∧ e) = P (h|e)× P (e)
= P (e|h)× P (h).

If P (e) 6= 0, you can divide the right hand sides by P (e):

P (h|e) =
P (e|h)× P (h)

P (e)
.

This is Bayes’ theorem.
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Why is Bayes’ theorem interesting?

I Often you have causal knowledge:
P (symptom | disease)
P (light is off | status of switches and switch positions)
P (alarm | fire)

P (image looks like | a tree is in front of a car)
I and want to do evidential reasoning:

P (disease | symptom)
P (status of switches | light is off and switch positions)
P (fire | alarm).

P (a tree is in front of a car | image looks like )
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Probabilistic independence

Random variable X is independent of random variable Y if, for all
xi ∈ dom(X), yj ∈ dom(Y ) and yk ∈ dom(Y ),

P (X = xi|Y = yj)
= P (X = xi|Y = yk)
= P (X = xi).

That is, knowledge of Y ’s value doesn’t affect your belief in the
value of X.
This is also called marginal independence.
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Examples of probabilistic independence

I The probability that the Canucks will win the Stanley Cup is
independent of whether light l1 is lit.

I remember the diagnostic assistant domain: the picture will
recur in a minute!

I Whether there is someone in a room is independent of
whether a light l2 is lit.

I Whether light l1 is lit is not independent of the position of
switch s2.
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