Reasoning Under Uncertainty: Introduction to Probability

CPSC 322 Lecture 23

March 8, 2006
Textbook $\S 9$

Lecture Overview

Recap

Probability Introduction

Syntax and Semantics of Probability

Objects and Relations

- It is useful to view the world as consisting of objects and relationships between these objects.
- Often the propositions we spoke about before can be condensed into a much smaller number of propositions if they are allowed to express relationships between objects and/or functions of objects.
- Thus, reasoning in terms of objects and relationships can be simpler than reasoning in terms of features, as you can express more general knowledge using logical variables.

Syntax of Datalog

- variable starts with upper-case letter.
- constant starts with lower-case letter or is a sequence of digits (numeral).
- predicate symbol starts with lower-case letter.
- term is either a variable or a constant.
- atomic symbol (atom) is of the form p or $p\left(t_{1}, \ldots, t_{n}\right)$ where p is a predicate symbol and t_{i} are terms.

Syntax of Datalog (cont)

- definite clause is either an atomic symbol (a fact) or of the form:

where a and b_{i} are atomic symbols.
- query is of the form $? b_{1} \wedge \cdots \wedge b_{m}$.
- knowledge base is a set of definite clauses.

Formal Semantics

An interpretation is a triple $I=\langle D, \phi, \pi\rangle$, where

- D, the domain, is a nonempty set. Elements of D are individuals.
- ϕ is a mapping that assigns to each constant an element of D. Constant c denotes individual $\phi(c)$.
- π is a mapping that assigns to each n-ary predicate symbol a relation: a function from D^{n} into $\{T R U E, F A L S E\}$.

Truth in an interpretation

A constant c denotes in I the individual $\phi(c)$.
Ground (variable-free) atom $p\left(t_{1}, \ldots, t_{n}\right)$ is

- true in interpretation I if $\pi(p)\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)=$ TRUE, where t_{i} denotes t_{i}^{\prime} in interpretation I and
- false in interpretation I if $\pi(p)\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)=$ FALSE.

Ground clause $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ is false in interpretation I if h is false in I and each b_{i} is true in I, and is true in interpretation I otherwise.

Variables

- Variables are universally quantified in the scope of a clause.
- A variable assignment is a function from variables into the domain.
- Given an interpretation and a variable assignment, each term denotes an individual and each clause is either true or false.
- A clause containing variables is true in an interpretation if it is true for all variable assignments.

Lecture Overview

Recap

Probability Introduction

Syntax and Semantics of Probability

Using Uncertain Knowledge

- Agents don't have complete knowledge about the world.
- Agents need to make decisions based on their uncertainty.
- It isn't enough to assume what the world is like. Example: wearing a seat belt.
- An agent needs to reason about its uncertainty.
- When an agent makes an action under uncertainty, it is gambling \Longrightarrow probability.

Probability

- Probability is formal measure of uncertainty. There are two camps:
- Frequentists: believe that probability represents something objective, and compute probabilities by counting the frequencies of different events
- Bayesians: believe that probability represents something subjective, and understand probabilities as degrees of belief.
- They compute probabilities by starting with prior beliefs, and then updating beliefs when they get new data.
- Example: Your degree of belief that a bird can fly is your measure of belief in the flying ability of an individual based only on the knowledge that the individual is a bird.
- Other agents may have different probabilities, as they may have had different experiences with birds or different knowledge about this particular bird.
- An agent's belief in a bird's flying ability is affected by what the agent knows about that bird.

Numerical Measures of Belief

- Belief in proposition, f, can be measured in terms of a number between 0 and 1 - this is the probability of f.
- The probability f is 0 means that f is believed to be definitely false.
- The probability f is 1 means that f is believed to be definitely true.
- Using 0 and 1 is purely a convention.
- f has a probability between 0 and 1 , doesn't mean f is true to some degree, but means you are ignorant of its truth value. Probability is a measure of your ignorance.

Random Variables

- A random variable is a term in a language that can take one of a number of different values.
- The domain of a variable X, written $\operatorname{dom}(X)$, is the set of values X can take.
- A tuple of random variables $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is a complex random variable with domain $\operatorname{dom}\left(X_{1}\right) \times \cdots \times \operatorname{dom}\left(X_{n}\right)$. Often the tuple is written as X_{1}, \ldots, X_{n}.
- Assignment $X=x$ means variable X has value x.
- A proposition is a Boolean formula made from assignments of values to variables.

Lecture Overview

Recap

Probability Introduction

Syntax and Semantics of Probability

Possible World Semantics

- A possible world specifies an assignment of one value to each random variable.
- $w \models X=x$ means variable X is assigned value x in world w.
- Logical connectives have their standard meaning:

$$
\begin{aligned}
& w \mid=\alpha \wedge \beta \text { if } w=\alpha \text { and } w \models \beta \\
& w \vDash \alpha \vee \beta \text { if } w \vDash \alpha \text { or } w \models \beta \\
& w \vDash \neg \alpha \text { if } w \not \models \alpha
\end{aligned}
$$

- Let Ω be the set of all possible worlds.

Semantics of Probability: finite case

For a finite number of possible worlds:

- Define a nonnegative measure $\mu(w)$ to each world w so that the measures of the possible worlds sum to 1 .
- The measure specifies how much you think the world w is like the real world.
- The probability of proposition f is defined by:

$$
P(f)=\sum_{w \models f} \mu(w) .
$$

Axioms of Probability: finite case

Four axioms define what follows from a set of probabilities: Axiom $1 P(f)=P(g)$ if $f \leftrightarrow g$ is a tautology. That is, logically equivalent formulae have the same probability.
Axiom $20 \leq P(f)$ for any formula f.
Axiom $3 P(\tau)=1$ if τ is a tautology.
Axiom $4 P(f \vee g)=P(f)+P(g)$ if $\neg(f \wedge g)$ is a tautology.

- These axioms are sound and complete with respect to the semantics.

Semantics of Probability: general case

In the general case we have a measure on sets of possible worlds, satisfying:

- $\mu(S) \geq 0$ for $S \subseteq \Omega$
- $\mu(\Omega)=1$
- $\mu\left(S_{1} \cup S_{2}\right)=\mu\left(S_{1}\right)+\mu\left(S_{2}\right)$ if $S_{1} \cap S_{2}=\{ \}$.

