Recap	Semantics	Role of Semantics	Proofs	Bottom-Up Proofs

Propositional Logic: Semantics and Bottom-Up Proofs

CPSC 322 Lecture 19

February 24, 2006 Textbook §4.2

Propositional Logic: Semantics and Bottom-Up Proofs

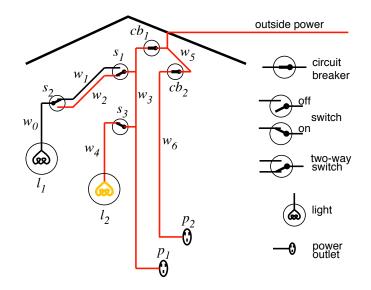
CPSC 322 Lecture 19, Slide 1

 Recap
 Semantics
 Role of Semantics
 Proofs
 Bottom-Up Proofs

Propositional Definite Clauses: Syntax

- An atom is a symbol starting with a lower case letter
- A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.
- A definite clause is an atom or is a rule of the form h ← b where h is an atom and b is a body.
 - read this as "h if b"
- A knowledge base is a set of definite clauses

Electrical Environment



Recap	Semantics	Role of Semantics	Proofs	Bottom-Up Proofs
-				

Representing the Electrical Environment

$light_l_1$.	$live_l_1 \leftarrow live_w_0$
$light_{l_2}$.	$live_w_0 \leftarrow live_w_1 \land up_s_2.$
$down_{-s_1}$.	$live_w_0 \leftarrow live_w_2 \land down_s_2.$
up_{-s_2} .	$live_w_1, \leftarrow live_w_3 \wedge up_s_1.$
up_{-s_3} .	$live_w_2 \leftarrow live_w_3 \wedge down_s_1.$
ap_{-b_3} . ok_{-l_1} .	$live_l_2 \leftarrow live_w_4.$
ok_{l_2}	$live_w_4 \leftarrow live_w_3 \land up_s_3.$
ok_cb_1 .	$live_p_1 \leftarrow live_w_3.$
$ok_{-}cb_{2}$.	$live_w_3 \leftarrow live_w_5 \land ok_cb_1.$
live outside.	$live_p_2 \leftarrow live_w_6.$
tite_batstac.	$live_w_6 \leftarrow live_w_5 \land ok_cb_2.$
	$live_w_5 \leftarrow live_outside.$

RecapSemanticsProofsBottom-Up ProofsPropositional Definite Clauses:Semantics

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

► An interpretation *I* assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses and knowledge bases:

- A body $b_1 \wedge b_2$ is true in I if b_1 is true in I and b_2 is true in I.
- A rule h ← b is false in I if b is true in I and h is false in I. The rule is true otherwise.
- ► A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

 Recap
 Semantics
 Proofs
 Bottom-Up Proofs

 Models and Logical Consequence
 Image: Consequence
 Image: Consequence
 Image: Consequence

- A model of a set of clauses is an interpretation in which all the clauses are *true*.
- If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB ⊨ g, if g is true in every model of KB.
 - ▶ we also say that g logically follows from KB, or that KB entails g.
- In other words, KB ⊨ g if there is no interpretation in which KB is true and g is false.

Recap	Semantics	Role of Semantics	Proofs	Bottom-Up Proofs
Example:	Models			

$$KB = \begin{cases} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

÷.

is a model of KBnot a model of KBis a model of KBis a model of KBnot a model of KB

Which of the following is true?

$$\blacktriangleright KB \models p, KB \models q, KB \models r, KB \models s$$

▶
$$KB \models p, KB \models q, KB \not\models r, KB \not\models s$$

Recap	Semantics	Role of Semantics	Proofs	Bottom-Up Proofs
User's vi	ew of Sema	antics		

- 1. Choose a task domain: intended interpretation.
- 2. Associate an atom with each proposition you want to represent.
- 3. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 4. Ask questions about the intended interpretation.
- 5. If $KB \models g$, then g must be true in the intended interpretation.
- 6. The use can interpret the answer using their intended interpretation of the symbols.

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- If $KB \models g$ then g must be true in the intended interpretation.
- ▶ If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.

Recap	Semantics	Role of Semantics	Proofs	Bottom-Up Proofs
Role of s	semantics			

In user's mind:

- *l*1_*broken*: light *l*1 is broken
- ► *sw_up*: switch is up
- power: there is power in the building
- unlit_l1: light l1 isn't lit
- ▶ *lit_l*2: light *l*2 is lit

In Computer:

 $l1_broken \leftarrow sw_up$ $\land power \land unlit_l1.$ $sw_up.$ $power \leftarrow lit_l2.$ $unlit_l1.$ $lit_l2.$

Conclusion: *l1_broken*

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbols using their meaning

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, KB ⊢ g means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
- A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.

 Recap
 Semantics
 Proofs
 Bottom-Up Proofs

 Bottom-up
 Ground
 Proof
 Procedure

One rule of derivation, a generalized form of modus ponens: If " $h \leftarrow b_1 \land \ldots \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are forward chaining on this clause. (This rule also covers the case when m = 0.)

Bottom-up proof procedure

$KB \vdash g$ if $g \subseteq C$ at the end of this procedure:

 $C := \{\};$ repeat
select clause " $h \leftarrow b_1 \land \ldots \land b_m$ " in KB such that $b_i \in C$ for all i, and $h \notin C$; $C := C \cup \{h\}$ until no more clauses can be selected.

Recap	Semantics	Role of Semantics	Proofs	Bottom-Up Proofs
Example				

 Recap
 Semantics
 Proofs
 Bottom-Up Proofs

 Soundness of bottom-up proof procedure

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- ▶ Let *h* be the first atom added to *C* that's not true in every model of *KB*.
- Suppose h isn't *true* in model I of KB.
- There must be a clause in *KB* of form

$$h \leftarrow b_1 \land \ldots \land b_m$$

Each b_i is true in I. h is false in I. So this clause is false in I.

Therefore I isn't a model of KB. Contradiction: thus no such g exists.

Recap	Semantics	Role of Semantics	Proofs	Bottom-Up Proofs
Fixed Po	oint			

The C generated at the end of the bottom-up algorithm is called a fixed point.

- ▶ further applications of our rule of derivation will not change C. Let I be the interpretation in which every element of the fixed point is true and every other atom is false. Claim: I is a model of KB. Proof:
 - ► Assume that I is not a model of KB. Then there must exist some clause h ← b₁ ∧ ... ∧ b_m in KB (having zero or more b_i's) which is false in I.
 - This can only occur when h is false and each b_i is true in I.
 - But in this case it would have been possible to add h to C.
 - ▶ Since C is a fixed point, no such I can exist.
- *I* is called a Minimal Model.

If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- ▶ Thus g is true in the minimal model.
- ▶ Thus g is generated by the bottom up algorithm.
- ▶ Thus $KB \vdash g$.