
Recap Hill Climbing Randomized Algorithms SLS for CSPs

Local Search

CPSC 322 Lecture 12

January 30, 2006
Textbook §3.8

Local Search CPSC 322 Lecture 12, Slide 1



Recap Hill Climbing Randomized Algorithms SLS for CSPs

Lecture Overview

Recap

Hill Climbing

Randomized Algorithms

SLS for CSPs

Local Search CPSC 322 Lecture 12, Slide 2



Recap Hill Climbing Randomized Algorithms SLS for CSPs

Local Search

A local search problem is defined by a:

I Set of Variables. A node in the search space will be a
complete assignment to all of the variables.

I Neighbour relation. An edge in the search space will exist
when the neighbour relation holds between a pair of nodes.

I Scoring function. This can be used to incorporate information
about how many constraints are violated. It can also
incorporate information about the cost of the solution in an
optimization context.
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Selecting Neighbours

How do we choose the neighbour relation?
I Usually this is simple: some small incremental change to the

variable assignment
I assignments that differ in one variable’s value
I assignments that differ in one variable’s value, by a value

difference of one
I assignments that differ in two variables’ values, etc.

I There’s a trade-off: bigger neighbourhoods allow more nodes
to be compared before a step is taken

I the best step is more likely to be taken
I each step takes more time: in the same amount of time,

multiple steps in a smaller neighbourhood could have been
taken

I Usually we prefer pretty small neighbourhoods
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Hill Climbing

Hill climbing means selecting the neighbour which best improves
the scoring function.

I For example, if the goal is to find the highest point on a
surface, the scoring function might be the height at the
current point.
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Gradient Ascent

What can we do if the variable(s) are continuous?

I With a constant step size we could overshoot the maximum.
I Here we can use the scoring function h to determine the

neighbourhood dynamically:
I Gradient ascent: change each variable proportional to the

gradient of the heuristic function in that direction.
I The value of variable Xi goes from vi to vi + η ∂h

∂Xi
.

I η is the constant of proportionality that determines how big
steps will be

I Gradient descent: go downhill; vi becomes vi − η ∂h
∂Xi

.
I these partial derivatives may be estimated using finite

differences
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Problems with Hill Climbing

Foothills local maxima that are
not global maxima

Plateaus heuristic values are
uninformative

Ridge foothill where a larger
neighbour relation
would help

Ignorance of the peak no way of
detecting a global
maximum

Ridge

Foothill

Plateau
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Randomized Algorithms

I Consider two methods to find a maximum value:
I Hill climbing, starting from some position, keep moving uphill

& report maximum value found
I Pick values at random & report maximum value found

I Which do you expect to work better to find a maximum?
I hill climbing is good for finding local maxima
I selecting random nodes is good for finding new parts of the

search space

I A mix of the two techniques can work even better
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Stochastic Local Search

I We can bring these two ideas together to make a randomized
version of hill climbing.

I As well as uphill steps we can allow for:
I Random steps: move to a random neighbor.
I Random restart: reassign random values to all variables.

I Which is more expensive computationally?
I usually, random restart (consider that there could be an

extremely large number of neighbors)
I however, if the neighbour relation is computationally

expensive, random restart could be cheaper
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1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

I Which of hill climbing with random walk and hill climbing
with random restart would most easily find the maximum?

I left: random restart; right: random walk

I As indicated before, stochastic local search often involves
both kinds of randomization
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Stochastic Local Search for CSPs

I Set of Variables: the same as the variables in the CSP

I Neighbour Relation: assignments that differ in the value
assigned to one variable

I Goal is to find an assignment with all constraints satisfied.
I Scoring function: the number of unsatisfied constraints.
I We want an assignment with minimum score.
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Greedy Descent

I Neighbour Relation: assignments that differ in the value
assigned to one variable

I This means we have to evaluate our scoring function on a lot
of different nodes for every step in the search

I # variables × # values evaluations

I Instead, we might consider a restricted neighbourhood:
I Values for the variable(s) that participate in the largest

number of conflicts.
I This alternative is easier to compute even if it doesn’t always

maximally reduce the number of conflicts.
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Random Walk

You can add randomness:

I When choosing the best variable-value pair, randomly
sometimes choose a random variable-value pair.

I When selecting a variable followed by a value:
I Sometimes choose the variable which participates in the largest

number of conflicts.
I Sometimes choose, at random, any variable that participates in

some conflict.
I Sometimes choose a random variable.
I Sometimes choose the best value for the chosen variable.
I Sometimes choose a random value for the chosen variable.
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