Diffusing Focused Loads in Networks using Pricing

Balaji Prabakar
Kevin Leyton-Brown
Ryan Porter
Yoav Shoham
Shobha Venkataraman

Computer Science Department
Stanford University
Focused Loading

- Many users demand network resources at some focal time, predictable in advance
- Canonical example: long distance phone
 - people want to talk as early as possible, minimize cost
 - utility maximized when rates drop at 5 PM: network demand spikes
- Computer networks: load can be even more focused
 - sudden onset: TicketMaster server as tickets go on sale
 - deadline: IRS server just before taxes are due
Managing Network Congestion

• Share bandwidth fairly, even when agents may act selfishly to maximize bandwidth available to them

• Technological: isolate packet flows
 – problem: difficult to implement

• Economic: give agents incentives
 – Smart Market: use bids to set price for network usage at each time slot [MacKie-Mason and Varian; Gibbens, Kelly, Key]
 – Paris Metro Pricing: partitions of the network that differ only in price [Odlyzko; Altmann’s system from 1st talk]
Diffusing Focused Loads

• Existing schemes are not designed to deal gracefully with sudden changes in load
 – technological: queues may be overwhelmed, leading to many dropped packets and degraded service for everyone
 – Smart Market will suddenly charge unpredictably higher prices
 – Paris Metro Pricing assumes that users have enough information about current load to choose the right class of service

• Rather than trying to decide which packets to drop, give an incentive for smoothing out the demand
 – possible because focused loads are predictable by definition
 – knowledge about utility functions means more revenue; more modest computational demands
Outline

1. Our game-theoretic model
2. A simple mechanism: “Matching Pennies”
3. A more complex mechanism: “Collective Reward”
4. Future directions

Warning: the length of this talk forces me to gloss over many details. More formal models and analysis are provided in our paper.
Our Model

• Network use is divided into t timeslots
• n risk-neutral agents will use the network for one time slot each
• Each slot has a fixed usage cost m
• Agent a_i’s valuation for slot s is given by $v_i(s)$
• $d(s)$ is the number of agents who choose slot s
• Give agents an incentive to balance load
 – waive the usage fee for slot s with probability $p(s)$
 – agents made aware of the mechanism, including how p is calculated, but not of the actual draws from p
Agents, Equilibria

- Agents act to maximize their own utility
 - agent’s action: choosing a slot
 - agent’s strategy: a probability distribution over slot choices
 - a_i’s utility for choosing slot s is $u_i(s) = v_i(s) - (1-p(s))m$
 - only consider mechanisms where participation is rational for all agents

- Nash equilibrium for a mechanism Φ:
 - a set of strategies for the agents participating in Φ where no single agent a_i can benefit from changing his strategy, given that all other agents’ strategies as fixed
 - strict equilibrium: a_i is always worse off changing strategy
 - weak equilibrium: a_i is never better off changing strategy
Mechanism Evaluation, Optimality

• Mechanism Φ has two goals:
 1. balance load caused by the agents’ selection of slots
 – $g(d)$: the monetary value of d to the network
 2. maximize expected revenue
 – depends on Φ and d: $E[R|\Phi,d]$

• Trade-off between load balancing and revenue
 – load balancing is achieved by offering free slots
 – $z(\Phi,d) = g(d) + E[R|\Phi,d]$

• Optimality of a mechanism-equilibrium pair
 – z maximal as compared to z for all other equilibria of other mechanisms (constant n, participation rational)
Our Mechanisms

• I’ll describe two in some detail; two more in our paper
• Why more than one mechanism? Many variables:

<table>
<thead>
<tr>
<th>Type of equilibrium or strategy</th>
<th>Payment only after all slots?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time cost of coordination phase</td>
<td>Non-optimal equilibria exist?</td>
</tr>
<tr>
<td>Time cost after coordination</td>
<td>Revenue increases if agents deviate?</td>
</tr>
<tr>
<td>Storage cost</td>
<td>Harmful collusion?</td>
</tr>
<tr>
<td>Communication cost</td>
<td>Irrational actions harm other agents?</td>
</tr>
<tr>
<td>Requires agent names?</td>
<td>Agents may have different (v) functions?</td>
</tr>
</tbody>
</table>

• To begin with, I’ll add two assumptions:
 1. all agents have the same preferences for slots
 2. mechanism designer knows these preferences
“Matching Pennies”

1. Decide if each slot will be free according to p
2. Each agent chooses a slot

Select p so that agents are indifferent between all time slots:

- i.e., $E[u_i]$ constant for all slots
- we’ll call this probability distribution p^*
MP: Equilibria

• *Any* set of strategies is a weak equilibrium, e.g.:
 – agents randomize (load balancing)
 – agents pick the “best” slots deterministically: maximize z
 • this is a weak, optimal equilibrium
 – agents pick *same* slot deterministically: focused loading!

• Theorem: if
 – agents have identical utility functions
 – payoffs are *independent* of agents’ moves
then a strict, optimal equilibrium *does not exist.*
“Collective Reward”

1. The mechanism assigns agents “names” corresponding to slot numbers
2. Each agent chooses a slot
3. The mechanism computes p, and determines which slots will actually be free

 - $\text{count}(s)$: the number of agents given name s
 - $d^+(s) = |\text{count}(s) - d(s)|$
 - S: the set of slots which minimize d^+

\[
p(s) = \begin{cases}
 p^*(s) & s \in S \\
 0 & s \not\in S
\end{cases}
\]
CR: Equilibrium φ

- A strict equilibrium: a_i chooses slot $name(i)$
- All other agents play this strategy—a_i could:
 1. play the strategy too
 - d^+ is minimized by all slots
 - a_i gets the same utility regardless of her name
 2. select a different slot
 - a_i’s slot will never be free
 - if expected utility for cooperation exceeds $v(bestslot)$, deviation is unprofitable, and φ is a strict equilibrium
CR: Choosing Names, Optimality

- Problem: we want to assign names to agents before we know how many agents will participate
- Theorem: assigning each agent the name that greedily improves z gives rise to optimal d
- Theorem: (CR, ϕ) is optimal
 - an optimal distribution of agents may be achieved
 - agents can be paid the minimum needed to make deviation unprofitable
CR: Bounds on Utility Functions

- Relax our assumptions:
 1. agents have different preferences for slots
 2. mech. doesn’t know agents’ preferences, knows bounds: v^l and v^u
 - impossible to construct optimal mechanisms in this case

- k-Optimality of a mechanism-equilibrium pair
 - z is no further than kn from its maximal value

- CR is k-optimal, $k = \max_s (v^u(s) - v^l(s))$
 - participation rational for all agents
 - expected cost of each slot less than v^l
 - deviation unprofitable
 - expected utility for each slot must exceed $v^u(bestslot)$
Two More Mechanisms

• “Bulletin Board”
 – agents coordinate with each other by broadcasting their intended slot choice
 – agents get free slots according to p^* iff their distribution is optimal; otherwise no slots are free
 – strict, optimal equilibrium

• “Discriminatory”
 – agents are assigned slots by the system
 – each agent gets the slot free according to p^* iff he chose the assigned slot; otherwise he pays m
 – dominant strategy: unique, optimal equilibrium
Future Work

• Theoretical:
 – consider other cases where agents’ valuations not known
 • e.g., mechanism announces price of next slot, retroactive payment of
 agents not allowed
 • can we achieve a bound on optimality here?

• Practical:
 – apply one of our mechanisms in a real system
 – beginning to work with Stanford student housing system, which
 experiences focused loads on application deadlines
 • their database can accommodate only 40 simultaneous users
 • this year they were forced to extend the application deadline because of
 system unavailability

• For the whole story, please see our paper:
 available at http://robotics.stanford.edu/~kevinlb