An Algorithm for
Multi-Unit
Combinatorial Auctions

Kevin Leyton-Brown
Yoav Shoham
Moshe Tennenholtz

Computer Science Dept.
Stanford University

thanks also to Shobha Venkataraman
Combinatorial Auctions

- Mechanisms that allow bidders to explicitly indicate complementarities and substitutabilities
 - many goods are auctioned simultaneously
 - bids name an arbitrary bundle and a price offer
 - bidders may submit multiple bids
 - if desired, some bids may be mutually exclusive
 - otherwise, more than one of a bidder’s bids may win

- Benefit: less risk for bidders
 - won’t win a subset of a bundle for more than it is worth to them
 - can request multiple mutually-exclusive bundles
 - More efficient / higher revenue
 - no need to hedge bids or restrict bidding to a single bundle
Multi-Unit CA’s

- Sometimes a set of goods are identical
 - traditionally, bidders have no way to compactly represent indifference between members of the set
 - instead, they must enumerate bundles between which they are indifferent
 - this can require a huge number of bids

- Multi-Unit CA
 - set of identical goods: a single multi-unit good
 - in general, consider all goods to have a fixed number of units
 - bids specify goods, number of units for each good, a price offer for the whole package
Winner Determination

- Auctioneer’s task:
 - given a set of bids, find the revenue-maximizing subset of these bids allocating no more than the maximum number of units for each good

- We can handle XOR with “dummy goods”
 - unique virtual goods with one unit
 - add a dummy good to every bid in an XOR set
 - now at most one bid from each set can be satisfied

- Same winner-determination procedure used by:
 - first-price combinatorial auction
 - generalized Vickrey auction
 - various ascending auction mechanisms
Unfortunately, winner determination is NP-Hard, even with only one unit per good

- Responses to intractability
 - approximation
 - restrict bids (tractable subcase)
 - find optimal solution anyway

- Benefits of finding optimal solution
 - constant-bounded approximation is still intractable
 - bidders’ strategies affected by approximation
 - restriction can prevent bidders from expressing full preferences
Finding Optimal Solution

- All previously-published work on CA’s has concerned single-unit case
- A natural solution: mixed-integer programming
 - rich history
 - commercial packages (CPLEX)
CAMUS

- **Combinatorial Auction Multi-Unit Search**
 - branch and bound search
 - structure the search space
 - avoid considering impossible allocations
 - efficient upper-bound function for pruning
 - enhancements
 - preprocessing dominated bids
 - dynamic programming
 - caching to improve tightness of upper-bound
 - heuristics
 - maximize effectiveness of pruning: upper bound
 - find good allocations quickly: lower bound

- A generalization of our CASS algorithm (1999)
First: CAMUS/Cplex comparison

- Necessary to use artificial data for testing
 - used a distribution from our new paper (to appear at EC-00)
 - aims to model bidding in real-world domains

- Railroad Shipping Domain: Railroad Graph
 - nodes: cities
 - edges: railroad link between cities
 - edge weights: link capacity
Railroad Distribution

- Randomly generate a graph
 - random num units per edge: $[1, \text{max_units_per_good}]$

- Create a new bidder
 - randomly choose start and end cities, number of units to ship
 - valuation for route: random proportional to the distance, superadditive in number of units
 - generate substitutable bids for all bundles of edges where valuation > cost of shipping ($c \times \text{distance}$)
 - price offer: valuation – cost, rounded to integer
Railroad Distribution: Example

Parameters: num_cities = 5.3 * goods + 3.5, initial_connections = 2, building_penalty = 2.7, num_building_paths = (num_cities)^2/4, shipping_cost_factor = 1.1, max_bid_set_size = 8, max_cap = 20, additivity = 0.2.
10 goods:
CAMUS, CPLEX, Min Performance

Number of Bids

Average over 10 Trials (s)

CAMUS - 10 CPLEX - 10 Min - 10
12 goods:
CAMUS, CPLEX, Min Performance

Average over 10 Trials (s)

Number of Bids

CAMUS - 12 CPLEX - 12 Min - 12
CAMUS Implementation: Search

- Depth-First Search on allocations
 - begin with empty allocation
 - add bids to current partial allocation until complete; backtrack

- Branch and Bound Search
 - lower bound: best allocation observed so far
 - upper bound: revenue of current partial allocation + overestimate of revenue from unallocated units
 - when upper bound \leq lower bound, backtrack
Structure the Search Space

- Partition the bids into bins
 - one bin for each good
 - each bid belongs to the bin corresponding to its lowest-order good

- After adding a bid, move to the bin for the lowest-order good with unallocated units
 - this may be the bin we just left (multi-unit!)
 - create a *subbin* of the current bin and keep searching
 - subbin: include only higher-order bids than the last bid chosen from this bin
 - any bids that we skip are guaranteed to conflict with the current partial allocation
Upper Bound Function $h(g, i, \pi)$

- An overestimate of the revenue that can be achieved from the remaining units of good g
 - given that the search is in bin i and has partial allocation π
 - precompute lists for all g, i:
 - each list: all bids for units of good g in bin i or beyond
 - sorted in descending order of average price per unit (APPU)

- Let b be first bid in list i that doesn’t conflict with π
 - b’s contribution to the overestimate:
 \[\text{APPU}(b) \times \min(\text{units}_i(b), \text{units_needed}_i)\]
 - if more units are still needed, keep moving down the list and find another non-conflicting bid; repeat

- Why does this work? Please see our paper…
Dominated Bids

- For each pair of bids \((b_1, b_2)\), where:
 - \(\text{price}(b_1) \geq \text{price}(b_2)\)
 - for all goods \(j\), \(\text{units}_j(b_1) \leq \text{units}_j(b_2)\)

- \(b_2\) will not win unless \(b_1\) also wins
 - store \(b_2\) as a “child” of \(b_1\)
 - only consider adding \(b_2\) after adding \(b_1\)
 - if \(\text{units}_j(b_1) + \text{units}_j(b_2) \geq \text{maxunits}_j\) for any \(j\)
 - we will never add \(b_2\): delete it
Dynamic Programming

- In some auctions, singleton bids will be relatively common
 - Additionally, singleton bids can be computationally expensive to consider: can lead to deep searches

- Dynamic programming preprocessing:
 - find the optimal set of singleton bids requesting from 1 to \(\text{maxunits}_j \), for each good \(j \)
 - in search, only ever consider the optimal singleton set that consumes all remaining units of a good
Caching

- It is possible to allocate the same number of units of the same goods in more than one way
 - the search beyond this point is always the same
 - store the results of search in a hash table, then reuse them if we get to the same point again
 - most searches are pruned before they reach a full allocation, so we can’t store the best allocation in the cache
- use the cache to store upper bounds
 - only store the results that involved non-negligible cost to compute
 - cache upper bounds often tighter than $h()$
- cache can be seen as learning a better $h()$
 - a tighter upper bound
Good-Ordering Heuristic

- Designate as good #1 the good i that minimizes
 \[
 \frac{\text{numbids}_i \cdot \text{maxunits}_i}{\text{avgunits}_i}
 \]
 - Minimize number of bids in low-order bins
 - Reduce branching
 - Minimize number of units of goods in low-order bins
 - Move quickly past the first bins, where the pruning function is least informative
 - Maximize total number of units requested by bids in low-order bins
 - Move quickly to high-order bins

- Remove bids involving good #1 and repeat for good #2, etc.
Bid-Ordering Heuristic

- Order bids within bin so we encounter most promising bids first
 - improve lower bound
- Sort bids b in descending order of $APPU(b) + h(\pi \cup b)$
 - $APPU(b)$ is a measure of b’s promise
 - $h()$ is a measure of how promising the unallocated units are, given partial allocation
 - This ordering is dynamic, because $h(\pi \cup b)$ depends on the past search
CAMUS vs. CPLEX

- The jury’s still out
 - CAMUS outperforms CPLEX on the railroad distribution
 - we’ve seen other cases where CPLEX is better
 - what are the strengths of each approach?

- Choice of distribution is fundamental to testing
 - can we agree on distributions that capture the patterns we expect from real-world bidding?
 - we’d love to get your feedback on this!
Conclusion

- CAMUS is a general-purpose algorithm for finding the winners of multi-unit combinatorial auctions

- A branch and bound search:
 - structuring the search space
 - preprocessing
 - dynamic programming
 - caching
 - heuristics for ordering goods and bids

- Promising performance when compared to CPLEX on our railroad distribution
 - more work needed to understand strengths and weaknesses of each approach on other real-world CA distributions